Free analysis is the study of analytic functions in several non-commuting variables.

- Free analysis is the study of analytic functions in several non-commuting variables.
- The subject dates back to the seminal paper by J.L. Taylor: 'Functions of several non-commuting variables', Bull. Amer. Math. Soc., 79:1-34, 1973.

- Free analysis is the study of analytic functions in several non-commuting variables.
- The subject dates back to the seminal paper by J.L. Taylor: 'Functions of several non-commuting variables', Bull. Amer. Math. Soc., 79:1-34, 1973.
- Dan Voiculescu in the context of developing tools for free probability studied analytic functions in non-commuting variables defined by power series:

'Free analysis questions. I. Duality transform for the coalgebra of $\partial_{X:B}$ ', Int. Math. Res. Not., (16):793 822, 2004, and

'Free analysis questions II: the Grassmannian completion and the series expansions at the origin', J. Reine Angew. Math., 645:155 236, 2010.

- Free analysis is the study of analytic functions in several non-commuting variables.
- The subject dates back to the seminal paper by J.L. Taylor: 'Functions of several non-commuting variables', Bull. Amer. Math. Soc., 79:1-34, 1973.
- ▶ Dan Voiculescu in the context of developing tools for free probability studied analytic functions in non-commuting variables defined by power series: 'Free analysis questions. I. Duality transform for the coalgebra of $\partial_{X:B}$ ', Int. Math. Res. Not., (16):793 822, 2004, and 'Free analysis questions II: the Grassmannian completion and the series

expansions at the origin', J. Reine Angew. Math., 645:155 236, 2010.

Bill Helton has developed an impressive program that applies free analysis to the development of a descriptive theory of the domains on which the methods of LMI and semi-definite programming apply. e.g. J. William Helton and Scott McCullough, 'Every convex free basic semi-algebraic set has an LMI representation'. Ann. of Math. (2), 176(2):979 1013, 2012.

- Free analysis is the study of analytic functions in several non-commuting variables.
- The subject dates back to the seminal paper by J.L. Taylor: 'Functions of several non-commuting variables', Bull. Amer. Math. Soc., 79:1-34, 1973.
- ▶ Dan Voiculescu in the context of developing tools for free probability studied analytic functions in non-commuting variables defined by power series: 'Free analysis questions. I. Duality transform for the coalgebra of ∂_{X:B}', Int. Math. Res. Not., (16):793 822, 2004, and 'Free analysis questions II: the Grassmannian completion and the series
 - expansions at the origin', J. Reine Angew. Math., 645:155 236, 2010.
- Bill Helton has developed an impressive program that applies free analysis to the development of a descriptive theory of the domains on which the methods of LMI and semi-definite programming apply. e.g. J. William Helton and Scott McCullough, 'Every convex free basic semi-algebraic set has an LMI representation'. Ann. of Math. (2), 176(2):979 1013, 2012.
- ▶ The recent research monograph, 'Foundations of noncommutative function theory' by **Dmitry S. Kaliuzhnyi-Verbovetskyi and Victor Vinnikov** in addition to containing numerous fundamental new results contains a panoramic survey of the field to date. arXiv:1212.6345.

A free polynomial is an element in \mathbb{P}_d , the semigroup algebra over \mathbb{C} of the free semigroup with d generators. We refer to the generators as 'variables'.

A free polynomial is an element in \mathbb{P}_d , the semigroup algebra over \mathbb{C} of the free semigroup with d generators. We refer to the generators as 'variables'.

For example,

$$p(x) = p(x^1, x^2) = 1 + 3x^1x^2 - 2x^2x^1 + 7x^1x^2x^1$$

is a free polynomial in 2 variables.

A free polynomial is an element in \mathbb{P}_d , the semigroup algebra over \mathbb{C} of the free semigroup with d generators. We refer to the generators as 'variables'.

For example,

$$p(x) = p(x^1, x^2) = 1 + 3x^1x^2 - 2x^2x^1 + 7x^1x^2x^1$$

is a free polynomial in 2 variables.

If $p \in \mathbb{P}_d$, then for each $n \in \mathbb{N}$ we can define a function p^{\wedge} by plugging in matrices for the variables.

A free polynomial is an element in \mathbb{P}_d , the semigroup algebra over \mathbb{C} of the free semigroup with d generators. We refer to the generators as 'variables'.

For example,

$$p(x) = p(x^1, x^2) = 1 + 3x^1x^2 - 2x^2x^1 + 7x^1x^2x^1$$

is a free polynomial in 2 variables.

If $p \in \mathbb{P}_d$, then for each $n \in \mathbb{N}$ we can define a function p^{\wedge} by plugging in matrices for the variables.

Thus, if p is the polynomial above, and $M=(M^1,M^2)$ is a pair of $n\times n$ matrices, $p^{\wedge}(M)$ is the $n\times n$ matrix defined by

$$p^{\wedge}(M) = 1 + 3M^{1}M^{2} - 2M^{2}M^{1} + 7M^{1}M^{2}M^{1}.$$

 \mathcal{M}_n is the set of $n \times n$ matrices with complex entries.

 \mathcal{M}_n is the set of $n \times n$ matrices with complex entries.

 \mathcal{M}_n^d is the set of *d*-tuples of $n \times n$ matrices with complex entries.

 \mathcal{M}_n is the set of $n \times n$ matrices with complex entries.

 \mathcal{M}_n^d is the set of *d*-tuples of $n \times n$ matrices with complex entries.

Thus, if $p \in \mathbb{P}_d$ and $M \in \mathcal{M}_n^d$, then $p^{\wedge}(M) \in \mathcal{M}_n$ is defined by

$$\rho^{\wedge}(M)=\rho(M^1,\ldots,M^d).$$

 \mathcal{M}_n is the set of $n \times n$ matrices with complex entries.

 \mathcal{M}_n^d is the set of *d*-tuples of $n \times n$ matrices with complex entries.

Thus, if $p \in \mathbb{P}_d$ and $M \in \mathcal{M}_n^d$, then $p^{\wedge}(M) \in \mathcal{M}_n$ is defined by

$$p^{\wedge}(M)=p(M^1,\ldots,M^d).$$

Since $n \in \mathbb{N}$ is an arbitrary natural number, we form

$$\mathcal{M}^1 = igcup_{n=1}^\infty \mathcal{M}_n \qquad ext{and} \qquad \mathcal{M}^d = igcup_{n=1}^\infty \mathcal{M}_n^d.$$

 \mathcal{M}_n is the set of $n \times n$ matrices with complex entries.

 \mathcal{M}_n^d is the set of *d*-tuples of $n \times n$ matrices with complex entries.

Thus, if $p \in \mathbb{P}_d$ and $M \in \mathcal{M}_n^d$, then $p^{\wedge}(M) \in \mathcal{M}_n$ is defined by

$$p^{\wedge}(M) = p(M^1, \ldots, M^d).$$

Since $n \in \mathbb{N}$ is an arbitrary natural number, we form

$$\mathcal{M}^1 = \bigcup_{n=1}^{\infty} \mathcal{M}_n$$
 and $\mathcal{M}^d = \bigcup_{n=1}^{\infty} \mathcal{M}_n^d$.

 \mathcal{M}^d is the 'one dimensional nc-universe', \mathcal{M}^d is the 'd-dimensional nc-universe' and if $p \in \mathbb{P}_d$, then

$$p^{\wedge}: \mathcal{M}^d \to \mathcal{M}^1$$
.

1. Domain $(p^{\wedge}) = \mathcal{M}^d$.

- 1. Domain $(p^{\wedge}) = \mathcal{M}^d$.
- 2. Codomain $(p^{\wedge}) = \mathcal{M}^1$.

- 1. Domain $(p^{\wedge}) = \mathcal{M}^d$.
- 2. Codomain $(p^{\wedge}) = \mathcal{M}^1$.
- 3. p^{\wedge} is **graded**

- 1. Domain $(p^{\wedge}) = \mathcal{M}^d$.
- 2. Codomain $(p^{\wedge}) = \mathcal{M}^1$.
- 3. p^{\wedge} is **graded**, i.e., if $n \in \mathbb{N}$ and $M \in \mathcal{M}_n^d$ then $p^{\wedge}(M) \in \mathcal{M}_n$.

- 1. Domain $(p^{\wedge}) = \mathcal{M}^d$.
- 2. Codomain $(p^{\wedge}) = \mathcal{M}^1$.
- 3. p^{\wedge} is **graded**, i.e., if $n \in \mathbb{N}$ and $M \in \mathcal{M}_n^d$ then $p^{\wedge}(M) \in \mathcal{M}_n$.
- 4. p^{\wedge} preserves direct sums

- 1. Domain $(p^{\wedge}) = \mathcal{M}^d$.
- 2. Codomain $(p^{\wedge}) = \mathcal{M}^1$.
- 3. p^{\wedge} is **graded**, i.e., if $n \in \mathbb{N}$ and $M \in \mathcal{M}_n^d$ then $p^{\wedge}(M) \in \mathcal{M}_n$.
- 4. p^{\wedge} preserves direct sums , i.e., if $M \in \mathcal{M}_m^d$ and $N \in \mathcal{M}_n^d$

- 1. Domain $(p^{\wedge}) = \mathcal{M}^d$.
- 2. Codomain $(p^{\wedge}) = \mathcal{M}^1$.
- 3. p^{\wedge} is **graded**, i.e., if $n \in \mathbb{N}$ and $M \in \mathcal{M}_n^d$ then $p^{\wedge}(M) \in \mathcal{M}_n$.
- 4. p^{\wedge} preserves direct sums , i.e., if $M\in\mathcal{M}_m^d$ and $N\in\mathcal{M}_n^d$, then with the notation,

$$M \oplus N = (M^1 \oplus N^1, \dots, M^d \oplus N^d),$$

- 1. Domain $(p^{\wedge}) = \mathcal{M}^d$.
- 2. Codomain $(p^{\wedge}) = \mathcal{M}^1$.
- 3. p^{\wedge} is **graded**, i.e., if $n \in \mathbb{N}$ and $M \in \mathcal{M}_n^d$ then $p^{\wedge}(M) \in \mathcal{M}_n$.
- 4. p^{\wedge} preserves direct sums , i.e., if $M\in\mathcal{M}_m^d$ and $N\in\mathcal{M}_n^d$, then with the notation,

$$M \oplus N = (M^1 \oplus N^1, \dots, M^d \oplus N^d),$$

we have that

$$p^{\wedge}(M \oplus N) = p^{\wedge}(M) \oplus p^{\wedge}(N).$$

- 1. Domain $(p^{\wedge}) = \mathcal{M}^d$.
- 2. Codomain $(p^{\wedge}) = \mathcal{M}^1$.
- 3. p^{\wedge} is **graded**, i.e., if $n \in \mathbb{N}$ and $M \in \mathcal{M}_n^d$ then $p^{\wedge}(M) \in \mathcal{M}_n$.
- 4. p^{\wedge} preserves direct sums , i.e., if $M\in\mathcal{M}_m^d$ and $N\in\mathcal{M}_n^d$, then with the notation,

$$M \oplus N = (M^1 \oplus N^1, \dots, M^d \oplus N^d),$$

we have that

$$p^{\wedge}(M \oplus N) = p^{\wedge}(M) \oplus p^{\wedge}(N).$$

5. p^{\wedge} preserves similarities

- 1. Domain $(p^{\wedge}) = \mathcal{M}^d$.
- 2. Codomain $(p^{\wedge}) = \mathcal{M}^1$.
- 3. p^{\wedge} is **graded**, i.e., if $n \in \mathbb{N}$ and $M \in \mathcal{M}_n^d$ then $p^{\wedge}(M) \in \mathcal{M}_n$.
- 4. p^{\wedge} preserves direct sums , i.e., if $M\in\mathcal{M}_m^d$ and $N\in\mathcal{M}_n^d$, then with the notation,

$$M \oplus N = (M^1 \oplus N^1, \dots, M^d \oplus N^d),$$

we have that

$$p^{\wedge}(M \oplus N) = p^{\wedge}(M) \oplus p^{\wedge}(N).$$

5. p^{\wedge} preserves similarities , i.e., if $n \in \mathbb{N}$, $M \in \mathcal{M}_n^d$ and $S \in \mathcal{I}_n$, the set of invertible $n \times n$ matrices

- 1. Domain $(p^{\wedge}) = \mathcal{M}^d$.
- 2. Codomain $(p^{\wedge}) = \mathcal{M}^1$.
- 3. p^{\wedge} is **graded**, i.e., if $n \in \mathbb{N}$ and $M \in \mathcal{M}_n^d$ then $p^{\wedge}(M) \in \mathcal{M}_n$.
- 4. p^{\wedge} preserves direct sums , i.e., if $M\in\mathcal{M}_m^d$ and $N\in\mathcal{M}_n^d$, then with the notation,

$$M \oplus N = (M^1 \oplus N^1, \dots, M^d \oplus N^d),$$

we have that

$$p^{\wedge}(M \oplus N) = p^{\wedge}(M) \oplus p^{\wedge}(N).$$

5. p^{\wedge} preserves similarities , i.e., if $n \in \mathbb{N}$, $M \in \mathcal{M}_n^d$ and $S \in \mathcal{I}_n$, the set of invertible $n \times n$ matrices , then with the notation,

$$S^{-1}MS = (S^{-1}M^1S, \dots, S^{-1}M^dS),$$

- 1. Domain $(p^{\wedge}) = \mathcal{M}^d$.
- 2. Codomain $(p^{\wedge}) = \mathcal{M}^1$.
- 3. p^{\wedge} is **graded**, i.e., if $n \in \mathbb{N}$ and $M \in \mathcal{M}_n^d$ then $p^{\wedge}(M) \in \mathcal{M}_n$.
- 4. p^{\wedge} preserves direct sums , i.e., if $M\in\mathcal{M}_m^d$ and $N\in\mathcal{M}_n^d$, then with the notation,

$$M \oplus N = (M^1 \oplus N^1, \dots, M^d \oplus N^d),$$

we have that

$$p^{\wedge}(M \oplus N) = p^{\wedge}(M) \oplus p^{\wedge}(N).$$

5. p^{\wedge} preserves similarities , i.e., if $n \in \mathbb{N}$, $M \in \mathcal{M}_n^d$ and $S \in \mathcal{I}_n$, the set of invertible $n \times n$ matrices , then with the notation,

$$S^{-1}MS = (S^{-1}M^1S, \dots, S^{-1}M^dS),$$

we have that

$$p^{\wedge}(S^{-1}MS) = S^{-1}p^{\wedge}(M)S.$$

Definition. We say that $D \subseteq \mathcal{M}^d$ is an *nc-domain* if

Definition. We say that $D \subseteq \mathcal{M}^d$ is an *nc-domain* if

1. for each $n \in \mathbb{N}$, $D \cap \mathcal{M}_n^d$ is open in \mathcal{M}_n^d ,

Definition. We say that $D \subseteq \mathcal{M}^d$ is an *nc-domain* if

- 1. for each $n \in \mathbb{N}$, $D \cap \mathcal{M}_n^d$ is open in \mathcal{M}_n^d ,
- 2. D is closed with respect to direct sums, and

Definition. We say that $D \subseteq \mathcal{M}^d$ is an *nc-domain* if

- 1. for each $n \in \mathbb{N}$, $D \cap \mathcal{M}_n^d$ is open in \mathcal{M}_n^d ,
- 2. D is closed with respect to direct sums, and
- 3. *D* is closed with respect to unitary equivalence.

Definition. We say that $D \subseteq \mathcal{M}^d$ is an *nc-domain* if

- 1. for each $n \in \mathbb{N}$, $D \cap \mathcal{M}_n^d$ is open in \mathcal{M}_n^d ,
- 2. D is closed with respect to direct sums, and
- 3. *D* is closed with respect to unitary equivalence.

Note. If we required D to be closed with respect to similarities, then

$$D = \{ M \in \mathcal{M}^1 \, | \, \|M\| < 1 \}$$

would not be an nc-domain.

Definition. We say that $D \subseteq \mathcal{M}^d$ is an *nc-domain* if

- 1. for each $n \in \mathbb{N}$, $D \cap \mathcal{M}_n^d$ is open in \mathcal{M}_n^d ,
- 2. D is closed with respect to direct sums, and
- 3. *D* is closed with respect to unitary equivalence.

Note. If we required D to be closed with respect to similarities, then

$$D = \{ M \in \mathcal{M}^1 \, | \, \|M\| < 1 \}$$

would not be an nc-domain.

Definition. We say that ϕ is an **nc-function on D** if $D\subseteq\mathcal{M}^d$ is an nc-domain, $\phi:D\to\mathcal{M}^1$, and

Definition. We say that $D \subseteq \mathcal{M}^d$ is an *nc-domain* if

- 1. for each $n \in \mathbb{N}$, $D \cap \mathcal{M}_n^d$ is open in \mathcal{M}_n^d ,
- 2. D is closed with respect to direct sums, and
- 3. *D* is closed with respect to unitary equivalence.

Note. If we required D to be closed with respect to similarities, then

$$D = \{ M \in \mathcal{M}^1 \, | \, \|M\| < 1 \}$$

would not be an nc-domain.

Definition. We say that ϕ is an **nc-function on D** if $D\subseteq\mathcal{M}^d$ is an nc-domain, $\phi:D\to\mathcal{M}^1$, and

1. ϕ is graded,

Definition. We say that $D \subseteq \mathcal{M}^d$ is an *nc-domain* if

- 1. for each $n \in \mathbb{N}$, $D \cap \mathcal{M}_n^d$ is open in \mathcal{M}_n^d ,
- 2. D is closed with respect to direct sums, and
- 3. *D* is closed with respect to unitary equivalence.

Note. If we required D to be closed with respect to similarities, then

$$D = \{ M \in \mathcal{M}^1 \, | \, \|M\| < 1 \}$$

would not be an nc-domain.

Definition. We say that ϕ is an **nc-function on D** if $D\subseteq\mathcal{M}^d$ is an nc-domain, $\phi:D\to\mathcal{M}^1$, and

- 1. ϕ is graded,
- 2. ϕ preserves direct sums, and

Definition. We say that $D \subseteq \mathcal{M}^d$ is an *nc-domain* if

- 1. for each $n \in \mathbb{N}$, $D \cap \mathcal{M}_n^d$ is open in \mathcal{M}_n^d ,
- 2. D is closed with respect to direct sums, and
- 3. D is closed with respect to unitary equivalence.

Note. If we required D to be closed with respect to similarities, then

$$D = \{ M \in \mathcal{M}^1 \, | \, \|M\| < 1 \}$$

would not be an nc-domain.

Definition. We say that ϕ is an **nc-function on D** if $D \subseteq \mathcal{M}^d$ is an nc-domain, $\phi: D \to \mathcal{M}^1$, and

- 1. ϕ is graded,
- 2. ϕ preserves direct sums, and
- 3.

$$\phi(S^{-1}MS) = S^{-1}\phi(M)S$$

whenever both M and $S^{-1}MS$ are points in D.

Definition. By a **basic set** in \mathcal{M}^d is meant a set of the form

$$G_{\delta} = \{x \in \mathcal{M}^d \mid ||\delta(x)|| < 1\}$$

where $\delta = [\delta_{ij}]$ is an $I \times J$ rectangular matrix with entries in \mathbb{P}_d .

Definition. By a **basic set** in \mathcal{M}^d is meant a set of the form

$$G_{\delta} = \{x \in \mathcal{M}^d \mid ||\delta(x)|| < 1\}$$

where $\delta = [\delta_{ij}]$ is an $I \times J$ rectangular matrix with entries in \mathbb{P}_d .

For example, if
$$\delta(x^1,x^2)=\begin{bmatrix}x^1\\\chi^2\end{bmatrix}$$
, then
$$G_\delta=\{x\in\mathcal{M}^2\,|\,x^{1^*}x^1+x^{2^*}x^2<1\}$$

is the column ball

Definition. By a **basic set** in \mathcal{M}^d is meant a set of the form

$$G_{\delta} = \{x \in \mathcal{M}^d \mid ||\delta(x)|| < 1\}$$

where $\delta = [\delta_{ij}]$ is an $I \times J$ rectangular matrix with entries in \mathbb{P}_d .

For example, if
$$\delta(x^1, x^2) = \begin{bmatrix} x^1 \\ x^2 \end{bmatrix}$$
, then

$$\textit{G}_{\delta} = \{x \in \mathcal{M}^2 \, | \, {x^1}^* x^1 + {x^2}^* x^2 < 1\}$$

is the **column ball** and if $\delta(x^1,x^2)=\begin{bmatrix} x^1 & 0 \\ 0 & x^2 \end{bmatrix}$, then

$$\textit{G}_{\delta} = \{x \in \mathcal{M}^2 \, | \, \|x^1\| < 1 \text{ and } \|x^2\| < 1\}$$

is the biball.

Definition. By a **basic set** in \mathcal{M}^d is meant a set of the form

$$G_{\delta} = \{x \in \mathcal{M}^d \mid ||\delta(x)|| < 1\}$$

where $\delta = [\delta_{ij}]$ is an $I \times J$ rectangular matrix with entries in \mathbb{P}_d .

For example, if
$$\delta(x^1, x^2) = \begin{bmatrix} x^1 \\ x^2 \end{bmatrix}$$
, then

$$\textit{G}_{\delta} = \{x \in \mathcal{M}^2 \, | \, {x^1}^* x^1 + {x^2}^* x^2 < 1\}$$

is the **column ball** and if $\delta(x^1,x^2)=\begin{bmatrix} x^1 & 0 \\ 0 & x^2 \end{bmatrix}$, then

$$G_{\delta} = \{ x \in \mathcal{M}^2 \, | \, \|x^1\| < 1 \text{ and } \|x^2\| < 1 \}$$

is the biball.

Notice that if δ_1 and δ_2 are matrices of free polynomials, then

$$G_{\delta_1} \cap G_{\delta_2} = G_{\delta_1 \oplus \delta_2}$$

Definition. By a basic set in \mathcal{M}^d is meant a set of the form

$$G_{\delta} = \{x \in \mathcal{M}^d \mid ||\delta(x)|| < 1\}$$

where $\delta = [\delta_{ij}]$ is an $I \times J$ rectangular matrix with entries in \mathbb{P}_d .

For example, if
$$\delta(x^1,x^2)=\begin{bmatrix} x^1\\ x^2 \end{bmatrix}$$
, then

$$G_{\delta} = \{x \in \mathcal{M}^2 \, | \, {x^1}^* x^1 + {x^2}^* x^2 < 1\}$$

is the **column ball** and if $\delta(x^1,x^2)=\begin{bmatrix}x^1&0\\0&x^2\end{bmatrix}$, then

$$\textit{G}_{\delta} = \{x \in \mathcal{M}^2 \, | \, \|x^1\| < 1 \text{ and } \|x^2\| < 1\}$$

is the biball.

Notice that if δ_1 and δ_2 are matrices of free polynomials, then

$$G_{\delta_1} \cap G_{\delta_2} = G_{\delta_1 \oplus \delta_2}$$

Definition. The **free topology on** \mathcal{M}^d is the topology on \mathcal{M}^d which has as a basis the basic open sets.

Let D be an nc-domain and let $\phi: D \to \mathcal{M}^1$ be a graded function.

1. ϕ is **free continuous** if ϕ is continuous when D and \mathcal{M}^1 are equipped with the free topology.

- 1. ϕ is **free continuous** if ϕ is continuous when D and \mathcal{M}^1 are equipped with the free topology.
- 2. ϕ is **free locally bounded** if for each $M \in D$ there exists a free open set U such that $M \in U$ and $\phi \mid U \cap D$ is bounded.

- 1. ϕ is **free continuous** if ϕ is continuous when D and \mathcal{M}^1 are equipped with the free topology.
- 2. ϕ is **free locally bounded** if for each $M \in D$ there exists a free open set U such that $M \in U$ and $\phi \mid U \cap D$ is bounded.
- 3. ϕ is **free locally nc** if for each $M \in D$ there exists a free open set U such that $M \in U$ and $\phi \mid U \cap D$ is an nc-function.

- 1. ϕ is **free continuous** if ϕ is continuous when D and \mathcal{M}^1 are equipped with the free topology.
- 2. ϕ is **free locally bounded** if for each $M \in D$ there exists a free open set U such that $M \in U$ and $\phi \mid U \cap D$ is bounded.
- 3. ϕ is **free locally nc** if for each $M \in D$ there exists a free open set U such that $M \in U$ and $\phi \mid U \cap D$ is an nc-function.
- 4. ϕ is **free locally approximable by free polynomials** if for each $M \in D$ there exists a free open set U such that for each $\epsilon > 0$ there exists a free polynomial p such that

$$\forall_{x \in U \cap D} \|\phi(x) - p(x)\| < \epsilon.$$

Let D be an nc-domain and let $\phi: D \to \mathcal{M}^1$ be a graded function.

- 1. ϕ is **free continuous** if ϕ is continuous when D and \mathcal{M}^1 are equipped with the free topology.
- 2. ϕ is **free locally bounded** if for each $M \in D$ there exists a free open set U such that $M \in U$ and $\phi \mid U \cap D$ is bounded.
- 3. ϕ is **free locally nc** if for each $M \in D$ there exists a free open set U such that $M \in U$ and $\phi \mid U \cap D$ is an nc-function.
- 4. ϕ is **free locally approximable by free polynomials** if for each $M \in D$ there exists a free open set U such that for each $\epsilon > 0$ there exists a free polynomial p such that

$$\forall_{x \in U \cap D} \ \|\phi(x) - p(x)\| < \epsilon.$$

5. ϕ is **analytic** if each for each $n \in \mathbb{N}$ each of the n^2 entries of $\phi(x)$ is an analytic function of the dn^2 entries of x.

Theorem. (J. Agler and J. E. McCarthy, *Global holomorphic functions in several non-commuting variables*, available on arXiv) Let ϕ be a graded function defined on the free domain D. The following conditions are equivalent.

1. ϕ is locally bounded and locally nc

- 1. ϕ is locally bounded and locally nc
- 2. ϕ is continuous and locally nc

- 1. ϕ is locally bounded and locally nc
- 2. ϕ is continuous and locally nc
- 3. ϕ is analytic and locally nc

- 1. ϕ is locally bounded and locally nc
- 2. ϕ is continuous and locally nc
- 3. ϕ is analytic and locally nc
- 4. ϕ is locally approximable by free polynomals

Theorem. (J. Agler and J. E. McCarthy, *Global holomorphic functions in several non-commuting variables*, available on arXiv) Let ϕ be a graded function defined on the free domain D. The following conditions are equivalent.

- 1. ϕ is locally bounded and locally nc
- 2. ϕ is continuous and locally nc
- 3. ϕ is analytic and locally nc
- 4. ϕ is locally approximable by free polynomals
- 2 implies 3 is inspired by one of the many interesting ideas in J.W. Helton, I. Klep, and S. McCullough's *Proper Analytic Free Maps*, J. Funct. Anal. 260 (2011) 14761490.

4□ > 4□ > 4 = > 4 = > = 90

Definition. Say a function ϕ is a **free holomorphic function** if the domain of ϕ is an open set in the free topology and any of the 4 equivalent conditions of the Fundamental Equivalence are satisfied.

Definition. Say a function ϕ is a **free holomorphic function** if the domain of ϕ is an open set in the free topology and any of the 4 equivalent conditions of the Fundamental Equivalence are satisfied.

Example. Functions defined by power series that converge uniformly and absolutely on 'sufficiently fat' subsets of a domain when the terms of the series are grouped homogenously.

Definition. Say a function ϕ is a **free holomorphic function** if the domain of ϕ is an open set in the free topology and any of the 4 equivalent conditions of the Fundamental Equivalence are satisfied.

Example. Functions defined by power series that converge uniformly and absolutely on 'sufficiently fat' subsets of a domain when the terms of the series are grouped homogenously.

Example. Free rational functions are free holomorphic functions.

Definition. Say a function ϕ is a **free holomorphic function** if the domain of ϕ is an open set in the free topology and any of the 4 equivalent conditions of the Fundamental Equivalence are satisfied.

Example. Functions defined by power series that converge uniformly and absolutely on 'sufficiently fat' subsets of a domain when the terms of the series are grouped homogenously.

Example. Free rational functions are free holomorphic functions.

Example. If $\delta = (x^1x^2 - x^2x^1)^2 - 4$, then G_{δ} is a nonempty basic set and

$$\phi(x) = \sum_{k=1}^{\infty} \frac{\delta(x)^k}{k}$$

defines a free holomorphic function on G_{δ} that is neither rational nor locally representable by a power series at any point $x_0 \in G_{\delta}$.

NP Problem Fix a basic set $G_{\delta} \subseteq \mathcal{M}^d$, **nodes** $\lambda_1, \ldots, \lambda_m \in G_{\delta}$ and **targets** $z_1, \ldots, z_m \in \mathcal{M}^1$.

NP Problem Fix a basic set $G_{\delta} \subseteq \mathcal{M}^d$, **nodes** $\lambda_1, \ldots, \lambda_m \in G_{\delta}$ and **targets** $z_1, \ldots, z_m \in \mathcal{M}^1$. Does there exist a function ϕ satisfying

NP Problem Fix a basic set $G_{\delta} \subseteq \mathcal{M}^d$, **nodes** $\lambda_1, \ldots, \lambda_m \in G_{\delta}$ and **targets** $z_1, \ldots, z_m \in \mathcal{M}^1$. Does there exist a function ϕ satisfying

1. ϕ is free holomorphic on G_{δ} ,

NP Problem Fix a basic set $G_{\delta} \subseteq \mathcal{M}^d$, **nodes** $\lambda_1, \ldots, \lambda_m \in G_{\delta}$ and **targets** $z_1, \ldots, z_m \in \mathcal{M}^1$. Does there exist a function ϕ satisfying

- 1. ϕ is free holomorphic on G_{δ} ,
- 2. $\sup_{x \in G_{\delta}} \|\phi(x)\| \le 1$, and

NP Problem Fix a basic set $G_{\delta} \subseteq \mathcal{M}^d$, **nodes** $\lambda_1, \ldots, \lambda_m \in G_{\delta}$ and **targets** $z_1, \ldots, z_m \in \mathcal{M}^1$. Does there exist a function ϕ satisfying

- 1. ϕ is free holomorphic on G_{δ} ,
- 2. $\sup_{x \in G_{\delta}} \|\phi(x)\| \le 1$, and
- 3. $\phi(\lambda_i) = z_i$ for each i = 1, ..., m?

NP Problem Fix a basic set $G_{\delta} \subseteq \mathcal{M}^d$, **nodes** $\lambda_1, \ldots, \lambda_m \in G_{\delta}$ and **targets** $z_1, \ldots, z_m \in \mathcal{M}^1$. Does there exist a function ϕ satisfying

- 1. ϕ is free holomorphic on G_{δ} ,
- 2. $\sup_{x \in G_{\delta}} \|\phi(x)\| \leq 1$, and
- 3. $\phi(\lambda_i) = z_i$ for each i = 1, ..., m?

Say an NP problem with nodes $\lambda_1, \ldots, \lambda_m \in G_\delta$ and targets $z_1, \ldots, z_m \in \mathcal{M}^1$ is **solvable** on G_δ if there exists a ϕ satisfying 1, 2, and 3 above.

A Polynomial Solution Without Bounds

Lemma 1. If an NP problem with nodes $\lambda_1,\ldots,\lambda_m\in G_\delta$ and targets $z_1,\ldots,z_m\in\mathcal{M}^1$ is solvable, then it must be solvable (without bounds) by a free polynomial, i.e.,

$$\exists_{\zeta\in\mathbb{P}_d}\ \zeta(\lambda_i)=z_i \ ext{for each}\ i=1,\ldots,m.$$

A Polynomial Solution Without Bounds

Lemma 1. If an NP problem with nodes $\lambda_1, \ldots, \lambda_m \in G_\delta$ and targets $z_1, \ldots, z_m \in \mathcal{M}^1$ is solvable, then it must be solvable (without bounds) by a free polynomial, i.e.,

$$\exists_{\zeta \in \mathbb{P}_d} \ \zeta(\lambda_i) = z_i \text{ for each } i = 1, \ldots, m.$$

Proof: Let ϕ be a solution. Form

$$\lambda = \bigoplus_{i=1}^m \lambda_i$$
 and $z = \bigoplus_{i=1}^m z_i$.

Lemma 1. If an NP problem with nodes $\lambda_1, \ldots, \lambda_m \in G_\delta$ and targets $z_1, \ldots, z_m \in \mathcal{M}^1$ is solvable, then it must be solvable (without bounds) by a free polynomial, i.e.,

$$\exists_{\zeta \in \mathbb{P}_d} \ \zeta(\lambda_i) = z_i \text{ for each } i = 1, \dots, m.$$

Proof: Let ϕ be a solution. Form

$$\lambda = \bigoplus_{i=1}^m \lambda_i$$
 and $z = \bigoplus_{i=1}^m z_i$.

As ϕ is holomorphic, in particular, ϕ preserves direct sums. Hence,

$$\phi(\lambda) = \phi(\bigoplus_{i=1}^m \lambda_i) = \bigoplus_{i=1}^m \phi(\lambda_i) = \bigoplus_{i=1}^m z_i = z.$$

Lemma 1. If an NP problem with nodes $\lambda_1, \ldots, \lambda_m \in G_\delta$ and targets $z_1, \ldots, z_m \in \mathcal{M}^1$ is solvable, then it must be solvable (without bounds) by a free polynomial, i.e.,

$$\exists_{\zeta \in \mathbb{P}_d} \ \zeta(\lambda_i) = z_i \text{ for each } i = 1, \dots, m.$$

Proof: Let ϕ be a solution. Form

$$\lambda = \bigoplus_{i=1}^m \lambda_i$$
 and $z = \bigoplus_{i=1}^m z_i$.

As ϕ is holomorphic, in particular, ϕ preserves direct sums. Hence,

$$\phi(\lambda) = \phi(\bigoplus_{i=1}^{m} \lambda_i) = \bigoplus_{i=1}^{m} \phi(\lambda_i) = \bigoplus_{i=1}^{m} z_i = z.$$

As ϕ is holomorphic, in particular ϕ is locally uniformly approximable by free polynomials. Hence, there exists a sequence $p_1, p_2, \ldots \in \mathbb{P}_d$ such that $p_k(\lambda) \to \phi(\lambda)$ as $k \to \infty$.

Lemma 1. If an NP problem with nodes $\lambda_1, \ldots, \lambda_m \in G_\delta$ and targets $z_1, \ldots, z_m \in \mathcal{M}^1$ is solvable, then it must be solvable (without bounds) by a free polynomial, i.e.,

$$\exists_{\zeta \in \mathbb{P}_d} \ \zeta(\lambda_i) = z_i \text{ for each } i = 1, \dots, m.$$

Proof: Let ϕ be a solution. Form

$$\lambda = \bigoplus_{i=1}^m \lambda_i$$
 and $z = \bigoplus_{i=1}^m z_i$.

As ϕ is holomorphic, in particular, ϕ preserves direct sums. Hence,

$$\phi(\lambda) = \phi(\bigoplus_{i=1}^m \lambda_i) = \bigoplus_{i=1}^m \phi(\lambda_i) = \bigoplus_{i=1}^m z_i = z.$$

As ϕ is holomorphic, in particular ϕ is locally uniformly approximable by free polynomials. Hence, there exists a sequence $p_1, p_2, \ldots \in \mathbb{P}_d$ such that $p_k(\lambda) \to \phi(\lambda)$ as $k \to \infty$. Therefore, if we let

$$\mathcal{A}_{\lambda} = \{ p(\lambda) \mid p \in \mathbb{P}_d \},\,$$

Lemma 1. If an NP problem with nodes $\lambda_1, \ldots, \lambda_m \in G_\delta$ and targets $z_1, \ldots, z_m \in \mathcal{M}^1$ is solvable, then it must be solvable (without bounds) by a free polynomial, i.e.,

$$\exists_{\zeta \in \mathbb{P}_d} \ \zeta(\lambda_i) = z_i \text{ for each } i = 1, \dots, m.$$

Proof: Let ϕ be a solution. Form

$$\lambda = \bigoplus_{i=1}^{m} \lambda_i$$
 and $z = \bigoplus_{i=1}^{m} z_i$.

As ϕ is holomorphic, in particular, ϕ preserves direct sums. Hence,

$$\phi(\lambda) = \phi(\bigoplus_{i=1}^m \lambda_i) = \bigoplus_{i=1}^m \phi(\lambda_i) = \bigoplus_{i=1}^m z_i = z.$$

As ϕ is holomorphic, in particular ϕ is locally uniformly approximable by free polynomials. Hence, there exists a sequence $p_1, p_2, \ldots \in \mathbb{P}_d$ such that $p_k(\lambda) \to \phi(\lambda)$ as $k \to \infty$. Therefore, if we let

$$\mathcal{A}_{\lambda} = \{ p(\lambda) \mid p \in \mathbb{P}_d \},\,$$

then

$$z = \phi(\lambda) = \lim_{k \to \infty} p_k(\lambda) \in \mathcal{A}_{\lambda}^-.$$

Lemma 1. If an NP problem with nodes $\lambda_1, \ldots, \lambda_m \in G_\delta$ and targets $z_1,\ldots,z_m\in\mathcal{M}^1$ is solvable, then it must be solvable (without bounds) by a free polynomial, i.e.,

$$\exists_{\zeta \in \mathbb{P}_d} \ \zeta(\lambda_i) = z_i \text{ for each } i = 1, \dots, m.$$

Proof: Let ϕ be a solution. Form

$$\lambda = \bigoplus_{i=1}^m \lambda_i$$
 and $z = \bigoplus_{i=1}^m z_i$.

As ϕ is holomorphic, in particular, ϕ preserves direct sums. Hence,

$$\phi(\lambda) = \phi(\bigoplus_{i=1}^m \lambda_i) = \bigoplus_{i=1}^m \phi(\lambda_i) = \bigoplus_{i=1}^m z_i = z.$$

As ϕ is holomorphic, in particular ϕ is locally uniformly approximable by free polynomials. Hence, there exists a sequence $p_1, p_2, \ldots \in \mathbb{P}_d$ such that $p_k(\lambda) \to \phi(\lambda)$ as $k \to \infty$. Therefore, if we let

$$\mathcal{A}_{\lambda} = \{ p(\lambda) \mid p \in \mathbb{P}_d \},\,$$

then

$$z = \phi(\lambda) = \lim_{k \to \infty} p_k(\lambda) \in \mathcal{A}_{\lambda}^-.$$

But, as A_{λ} is finite dimensional, $A_{\lambda}^{-} = A_{\lambda}$. Therefore, $z \in A_{\lambda}$, i.e., there exists $\zeta \in \mathbb{P}_d$ such that $\zeta(\lambda) = z$. For this ζ , $\zeta(\lambda_i) = z_i$ for each i

A **free variety** is a set in \mathcal{M}^d defined as the joint 0-set of a collection of free polynomials. Ideals that can be associated with these varieties are studied in 'Real Nullstellensatz and *-Ideals in *-Algebras' by J. Cimpric, J. W. Helton, S. McCullough, and C. Nelson (available on ArXiv)

A **free variety** is a set in \mathcal{M}^d defined as the joint 0-set of a collection of free polynomials. Ideals that can be associated with these varieties are studied in 'Real Nullstellensatz and *-Ideals in *-Algebras' by J. Cimpric, J. W. Helton, S. McCullough, and C. Nelson (available on ArXiv)

Let V_{λ} denote the smallest free variety containing the nodes $\lambda_1, \dots, \lambda_m$, i.e.,

$$V_{\lambda} = \{x \in \mathcal{M}^d \,|\, p(x) = 0 \text{ whenever } p(\lambda_i) = 0 \text{ for each } i\}.$$

A **free variety** is a set in \mathcal{M}^d defined as the joint 0-set of a collection of free polynomials. Ideals that can be associated with these varieties are studied in 'Real Nullstellensatz and *-Ideals in *-Algebras' by J. Cimpric, J. W. Helton, S. McCullough, and C. Nelson (available on ArXiv)

Let V_{λ} denote the smallest free variety containing the nodes $\lambda_1, \dots, \lambda_m$, i.e.,

$$V_{\lambda} = \{x \in \mathcal{M}^d \mid p(x) = 0 \text{ whenever } p(\lambda_i) = 0 \text{ for each } i\}.$$

Fact. If p is a free polynomial and $p(\lambda) = \zeta(\lambda)$, then $p(x) = \zeta(x)$ for all $x \in V_{\lambda}$.

A **free variety** is a set in \mathcal{M}^d defined as the joint 0-set of a collection of free polynomials. Ideals that can be associated with these varieties are studied in 'Real Nullstellensatz and *-Ideals in *-Algebras' by J. Cimpric, J. W. Helton, S. McCullough, and C. Nelson (available on ArXiv)

Let V_{λ} denote the smallest free variety containing the nodes $\lambda_1, \dots, \lambda_m$, i.e.,

$$V_{\lambda} = \{x \in \mathcal{M}^d \mid p(x) = 0 \text{ whenever } p(\lambda_i) = 0 \text{ for each } i\}.$$

Fact. If p is a free polynomial and $p(\lambda) = \zeta(\lambda)$, then $p(x) = \zeta(x)$ for all $x \in V_{\lambda}$.

Lemma 2. If ϕ is any free holomorphic function on G_{λ} satisfying $\phi(\lambda) = \zeta(\lambda)$, then $\phi(x) = \zeta(x)$ for all $x \in V_{\lambda} \cap G_{\delta}$.

If an NP problem with nodes $\lambda_1,\ldots,\lambda_m\in G_\delta$ and targets $z_1,\ldots,z_m\in\mathcal{M}^1$ is solvable, then necessarily there must be a free polynomial that interpolates the nodes to the targets, i.e.,

$$\exists_{\zeta \in \mathbb{P}_d} \ \zeta(\lambda_i) = z_i \text{ for each } i = 1, \ldots, m.$$

If an NP problem with nodes $\lambda_1,\ldots,\lambda_m\in G_\delta$ and targets $z_1,\ldots,z_m\in \mathcal{M}^1$ is solvable, then necessarily there must be a free polynomial that interpolates the nodes to the targets, i.e.,

$$\exists_{\zeta \in \mathbb{P}_d} \ \zeta(\lambda_i) = z_i \ ext{for each} \ i = 1, \ldots, m.$$

Furthermore, if ζ is any such polynomial and ϕ is a solution to the problem, then since $\phi(\lambda) = \zeta(\lambda)$, Lemma 2 implies that $\phi = \zeta$ on all of V_{λ} .

If an NP problem with nodes $\lambda_1,\ldots,\lambda_m\in G_\delta$ and targets $z_1,\ldots,z_m\in \mathcal{M}^1$ is solvable, then necessarily there must be a free polynomial that interpolates the nodes to the targets, i.e.,

$$\exists_{\zeta \in \mathbb{P}_d} \ \zeta(\lambda_i) = z_i \text{ for each } i = 1, \ldots, m.$$

Furthermore, if ζ is any such polynomial and ϕ is a solution to the problem, then since $\phi(\lambda)=\zeta(\lambda)$, Lemma 2 implies that $\phi=\zeta$ on all of V_{λ} . Hence,

$$\sup_{x \in V_{\lambda} \cap G_{\delta}} \|\zeta(x)\| = \sup_{x \in V_{\lambda} \cap G_{\delta}} \|\phi(x)\| \le 1.$$

If an NP problem with nodes $\lambda_1,\ldots,\lambda_m\in G_\delta$ and targets $z_1,\ldots,z_m\in \mathcal{M}^1$ is solvable, then necessarily there must be a free polynomial that interpolates the nodes to the targets, i.e.,

$$\exists_{\zeta \in \mathbb{P}_d} \ \zeta(\lambda_i) = z_i \text{ for each } i = 1, \ldots, m.$$

Furthermore, if ζ is any such polynomial and ϕ is a solution to the problem, then since $\phi(\lambda) = \zeta(\lambda)$, Lemma 2 implies that $\phi = \zeta$ on all of V_{λ} . Hence,

$$\sup_{x \in V_{\lambda} \cap G_{\delta}} \|\zeta(x)\| = \sup_{x \in V_{\lambda} \cap G_{\delta}} \|\phi(x)\| \le 1.$$

These necessary conditions are sufficient to solve the problem as well.

If an NP problem with nodes $\lambda_1,\ldots,\lambda_m\in G_\delta$ and targets $z_1,\ldots,z_m\in \mathcal{M}^1$ is solvable, then necessarily there must be a free polynomial that interpolates the nodes to the targets, i.e.,

$$\exists_{\zeta \in \mathbb{P}_d} \ \zeta(\lambda_i) = z_i \text{ for each } i = 1, \ldots, m.$$

Furthermore, if ζ is any such polynomial and ϕ is a solution to the problem, then since $\phi(\lambda) = \zeta(\lambda)$, Lemma 2 implies that $\phi = \zeta$ on all of V_{λ} . Hence,

$$\sup_{x \in V_{\lambda} \cap G_{\delta}} \|\zeta(x)\| = \sup_{x \in V_{\lambda} \cap G_{\delta}} \|\phi(x)\| \le 1.$$

These necessary conditions are sufficient to solve the problem as well.

Since a NP problem, if it is solvable, must be solvable by a polynomial, we may as well assume that the problem was presented to begin with via a polynomial, i.e., assume that the targets are given as the values at the nodes of a free polynomial.

Theorem. Fix a basic set $G_{\delta} \subseteq \mathcal{M}^d$, points $\lambda_1, \dots, \lambda_m \in G_{\delta}$ and a free polynomial ζ .

Theorem. Fix a basic set $G_{\delta} \subseteq \mathcal{M}^d$, points $\lambda_1, \ldots, \lambda_m \in G_{\delta}$ and a free polynomial ζ . There exists a free holomorphic function ϕ on G_{δ} satisfying

$$\sup_{x \in G_{\delta}} \|\phi(x)\| \le 1 \quad \text{and} \quad \phi(\lambda_i) = \zeta(\lambda_i), \quad i = 1, \dots, m$$

Theorem. Fix a basic set $G_{\delta} \subseteq \mathcal{M}^d$, points $\lambda_1, \ldots, \lambda_m \in G_{\delta}$ and a free polynomial ζ . There exists a free holomorphic function ϕ on G_{δ} satisfying

$$\sup_{x \in G_{\delta}} \|\phi(x)\| \le 1 \quad \text{and} \quad \phi(\lambda_i) = \zeta(\lambda_i), \quad i = 1, \dots, m$$

if and only if

Theorem. Fix a basic set $G_{\delta} \subseteq \mathcal{M}^d$, points $\lambda_1, \ldots, \lambda_m \in G_{\delta}$ and a free polynomial ζ . There exists a free holomorphic function ϕ on G_{δ} satisfying

$$\sup_{x \in G_{\delta}} \|\phi(x)\| \le 1 \quad \text{and} \quad \phi(\lambda_i) = \zeta(\lambda_i), \quad i = 1, \dots, m$$

if and only if

$$\sup_{x\in V_\lambda\cap G_\delta}\|\zeta(x)\|\leq 1.$$

1. For each $\mathbb{N} \in \mathbb{N}$ let $E_n = V_\lambda \cap G_\delta \cap \mathcal{M}_n^d$.

- 1. For each $\mathbb{N} \in \mathbb{N}$ let $E_n = V_\lambda \cap G_\delta \cap \mathcal{M}_n^d$.
- 2. Let $E^{[2]} = \bigcup_{n=1}^{\infty} E_n \times E_n$.

- 1. For each $\mathbb{N} \in \mathbb{N}$ let $E_n = V_\lambda \cap G_\delta \cap \mathcal{M}_n^d$.
- 2. Let $E^{[2]} = \bigcup_{n=1}^{\infty} E_n \times E_n$.
- 3. View $\mathbb{P}_d \otimes \mathbb{P}_d$ as a space of functions on $E^{[2]}$ by identifying $q \otimes p$ with the function h defined by

$$h(y,x) = q(y)^* p(x), \qquad (x,y) \in E^{[2]}.$$

- 1. For each $\mathbb{N} \in \mathbb{N}$ let $E_n = V_\lambda \cap G_\delta \cap \mathcal{M}_n^d$.
- 2. Let $E^{[2]} = \bigcup_{n=1}^{\infty} E_n \times E_n$.
- 3. View $\mathbb{P}_d \otimes \mathbb{P}_d$ as a space of functions on $E^{[2]}$ by identifying $q \otimes p$ with the function h defined by

$$h(y,x) = q(y)^* p(x), \qquad (x,y) \in E^{[2]}.$$

Call this space H.

- 1. For each $\mathbb{N} \in \mathbb{N}$ let $E_n = V_\lambda \cap G_\delta \cap \mathcal{M}_n^d$.
- 2. Let $E^{[2]} = \bigcup_{n=1}^{\infty} E_n \times E_n$.
- 3. View $\mathbb{P}_d \otimes \mathbb{P}_d$ as a space of functions on $E^{[2]}$ by identifying $q \otimes p$ with the function h defined by

$$h(y,x) = q(y)^* p(x), \qquad (x,y) \in E^{[2]}.$$

Call this space H.

4. Equip *H* with a locally convex topology so that the Hahn-Banach Separation Theorem can be applied to probe convex subsets of *H*.

- 1. For each $\mathbb{N} \in \mathbb{N}$ let $E_n = V_\lambda \cap G_\delta \cap \mathcal{M}_n^d$.
- 2. Let $E^{[2]} = \bigcup_{n=1}^{\infty} E_n \times E_n$.
- 3. View $\mathbb{P}_d \otimes \mathbb{P}_d$ as a space of functions on $E^{[2]}$ by identifying $q \otimes p$ with the function h defined by

$$h(y,x) = q(y)^* p(x), \qquad (x,y) \in E^{[2]}.$$

Call this space H.

- 4. Equip *H* with a locally convex topology so that the Hahn-Banach Separation Theorem can be applied to probe convex subsets of *H*.
- 5. Let C be the wedge in H generated by the elements $h \in H$ that have the form

$$h(y,x) = p(y)^*(1 - \delta(y)^*\delta(x))p(x), \qquad (x,y) \in E^{[2]}$$

- 1. For each $\mathbb{N} \in \mathbb{N}$ let $E_n = V_\lambda \cap G_\delta \cap \mathcal{M}_n^d$.
- 2. Let $E^{[2]} = \bigcup_{n=1}^{\infty} E_n \times E_n$.
- 3. View $\mathbb{P}_d \otimes \mathbb{P}_d$ as a space of functions on $E^{[2]}$ by identifying $q \otimes p$ with the function h defined by

$$h(y,x) = q(y)^* p(x), \qquad (x,y) \in E^{[2]}.$$

Call this space H.

- 4. Equip H with a locally convex topology so that the Hahn-Banach Separation Theorem can be applied to probe convex subsets of H.
- 5. Let C be the wedge in H generated by the elements $h \in H$ that have the form

$$h(y,x) = p(y)^*(1 - \delta(y)^*\delta(x))p(x), \qquad (x,y) \in E^{[2]}$$

for some

$$p = egin{bmatrix} p_1 \ dots \ p_J \end{bmatrix} \in \mathbb{C}^J \otimes \mathbb{P}_d.$$

6. Apply the Hahn-Banach Separation Theorem to wedge C and the point $h=1-\zeta(y)^*\zeta(x)$ to show that the condition,

$$\sup_{x \in V_{\lambda} \cap G_{\delta}} \|\zeta(x)\| \le 1,$$

6. Apply the Hahn-Banach Separation Theorem to wedge C and the point $h=1-\zeta(y)^*\zeta(x)$ to show that the condition,

$$\sup_{x \in V_{\lambda} \cap G_{\delta}} \|\zeta(x)\| \le 1,$$

in the statement of the Free Nevanlinna Pick Theorem

6. Apply the Hahn-Banach Separation Theorem to wedge C and the point $h = 1 - \zeta(y)^*\zeta(x)$ to show that the condition,

$$\sup_{x \in V_{\lambda} \cap G_{\delta}} \|\zeta(x)\| \le 1,$$

in the statement of the Free Nevanlinna Pick Theorem implies that ζ has a $\delta\text{-model}$

6. Apply the Hahn-Banach Separation Theorem to wedge C and the point $h = 1 - \zeta(y)^*\zeta(x)$ to show that the condition,

$$\sup_{x \in V_{\lambda} \cap G_{\delta}} \|\zeta(x)\| \le 1,$$

in the statement of the Free Nevanlinna Pick Theorem implies that ζ has a δ -model , i.e., there exist free vector-valued polynomials $p_1,\ldots,p_N\in\mathbb{C}^J\otimes\mathbb{P}_d$ such that

6. Apply the Hahn-Banach Separation Theorem to wedge C and the point $h=1-\zeta(y)^*\zeta(x)$ to show that the condition,

$$\sup_{x \in V_{\lambda} \cap G_{\delta}} \|\zeta(x)\| \le 1,$$

in the statement of the Free Nevanlinna Pick Theorem implies that ζ has a δ -model , i.e., there exist free vector-valued polynomials $p_1, \ldots, p_N \in \mathbb{C}^J \otimes \mathbb{P}_d$ such that

$$1 - \zeta(y)^* \zeta(x) = \sum_{k=1}^N p_k(y)^* \Big(1 - \delta(y)^* \delta(x) \Big) p_k(x), \qquad (x, y) \in E^{[2]}.$$

7. For each fixed $n \in \mathbb{N}$, apply a Lurking Isometry Argument to deduce the existence of an isometry

$$L_n = \begin{bmatrix} A_n & B_n \\ C_n & D_n \end{bmatrix} : \mathbb{C}^n \oplus (\mathbb{C}^n \otimes \mathbb{C}^I \otimes \ell^2) \to \mathbb{C}^n \oplus (\mathbb{C}^n \otimes \mathbb{C}^J \otimes \ell^2)$$

such that for each $x \in V_{\lambda} \cap G_{\delta} \cap \mathcal{M}_{n}^{d}$,

$$\zeta(x) = A_n + B_n \left(\delta(x) \otimes \mathrm{id}_{\ell^2} \right) \left(1 - D_n \left(\delta(x) \otimes \mathrm{id}_{\ell^2} \right) \right)^{-1} C_n.$$

8. Exploit the fact that ζ , the entries of δ , and the coefficients p_1,\ldots,p_N in the model formula for ζ are free polynomials to show that the highly non-unique isometries L_n of the previous step can be modified so as to satisfy the additional property that for each $n\in\mathbb{N}$,

$$L_n = \mathrm{id}_n \otimes L_1$$
.

9. Steps 7. and 8. imply the formula,

$$\zeta(x) = \mathrm{id}_n \otimes A_1 + (\mathrm{id}_n \otimes B_1)(\delta(x) \otimes \mathrm{id}_{\ell^2}) \Big(1 - (\mathrm{id}_n \otimes D_1)(\delta(x) \otimes \mathrm{id}_{\ell^2}) \Big)^{-1} (\mathrm{id}_n \otimes C_1),$$
valid for each $n \in \mathbb{N}$ and each $x \in V_\lambda \cap G_\delta \cap \mathcal{M}_n^d$.

10. Define ϕ on all of $G_\delta \cap \mathcal{M}_n^d$ by the formula,

$$\phi(x) = \mathrm{id}_n \otimes A_1 + (\mathrm{id}_n \otimes B_1)(\delta(x) \otimes \mathrm{id}_{\ell^2}) \Big(1 - (\mathrm{id}_n \otimes D_1)(\delta(x) \otimes \mathrm{id}_{\ell^2}) \Big)^{-1} (\mathrm{id}_n \otimes C_1),$$

11. $\triangleright x \in G_{\delta}$ implies

$$\|(\mathrm{id}_n \otimes D_1)(\delta(x) \otimes \mathrm{id}_{\ell^2})\| < 1.$$

Therefore, ϕ is well defined.

- ▶ The \otimes ,^s are in the formula are laid out in such a way that 'follow your nose algebra' guarantees that ϕ is an nc-function.
- ► Since $L_1 = \begin{bmatrix} A_1 & B_1 \\ C_1 & D_1 \end{bmatrix}$ is an isometry,

$$\sup_{x \in G_{\delta}} \|\phi(x)\| \le 1.$$

- ▶ In particular, the Fundamental Theorem implies that ϕ is a free holomorphic function.
- ► The formulas for ζ and ϕ agree when $x \in V_{\lambda} \cap G_{\delta}$. Therefore, since $\lambda_i \in V_{\lambda} \cap G_{\delta}$ for each i, $\phi(\lambda_i) = \zeta(\lambda_i)$ for each i.