
A Free Nevanlinna-Pick Theorem (joint work with John
McCarthy)

I Free analysis is the study of analytic functions in several non-commuting
variables.

I The subject dates back to the seminal paper by J.L. Taylor: ‘Functions of
several non-commuting variables’, Bull. Amer. Math. Soc., 79:1-34, 1973.

I Dan Voiculescu in the context of developing tools for free probability studied
analytic functions in non-commuting variables defined by power series:

‘Free analysis questions. I. Duality transform for the coalgebra of ∂X :B ’, Int.
Math. Res. Not., (16):793 822, 2004, and

‘Free analysis questions II: the Grassmannian completion and the series
expansions at the origin’, J. Reine Angew. Math., 645:155 236, 2010.

I Bill Helton has developed an impressive program that applies free analysis to the
development of a descriptive theory of the domains on which the methods of
LMI and semi-definite programming apply. e.g. J. William Helton and Scott
McCullough, ‘Every convex free basic semi-algebraic set has an LMI
representation’. Ann. of Math. (2), 176(2):979 1013, 2012.

I The recent research monograph, ‘Foundations of noncommutative function
theory’ by Dmitry S. Kaliuzhnyi-Verbovetskyi and Victor Vinnikov in addition
to containing numerous fundamental new results contains a panoramic survey of
the field to date. arXiv:1212.6345.
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Free Polynomials

A free polynomial is an element in Pd , the semigroup algebra over C of
the free semigroup with d generators. We refer to the generators as
‘variables’.

For example,

p(x) = p(x1, x2) = 1 + 3x1x2 − 2x2x1 + 7x1x2x1

is a free polynomial in 2 variables.

If p ∈ Pd , then for each n ∈ N we can define a function p∧ by plugging
in matrices for the variables.

Thus, if p is the polynomial above, and M = (M1,M2) is a pair of n × n
matrices, p∧(M) is the n × n matrix defined by

p∧(M) = 1 + 3M1M2 − 2M2M1 + 7M1M2M1.
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Md andM1, the domain and codomain of p∧

Mn is the set of n × n matrices with complex entries.

Md
n is the set of d-tuples of n × n matrices with complex entries.

Thus, if p ∈ Pd and M ∈Md
n , then p∧(M) ∈Mn is defined by

p∧(M) = p(M1, . . . ,Md).

Since n ∈ N is an arbitrary natural number, we form

M1 =
∞⋃
n=1

Mn and Md =
∞⋃
n=1

Md
n .

Md is the ‘one dimensional nc-universe’, Md is the ‘d-dimensional
nc-universe’ and if p ∈ Pd , then

p∧ :Md →M1.
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Some properties of the functions p∧

1. Domain(p∧) =Md .

2. Codomain(p∧) =M1.

3. p∧ is graded , i.e., if n ∈ N and M ∈Md
n then p∧(M) ∈Mn.

4. p∧ preserves direct sums , i.e., if M ∈Md
m and N ∈Md

n , then
with the notation,

M ⊕ N = (M1 ⊕ N1, . . . ,Md ⊕ Nd),

we have that
p∧(M ⊕ N) = p∧(M)⊕ p∧(N).

5. p∧ preserves similarities , i.e., if n ∈ N, M ∈Md
n and S ∈ In, the

set of invertible n × n matrices , then with the notation,

S−1MS = (S−1M1S , . . . ,S−1MdS),

we have that
p∧(S−1MS) = S−1p∧(M)S .
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nc-Domains and nc-Functions

Definition. We say that D ⊆Md is an nc-domain if

1. for each n ∈ N, D ∩Md
n is open in Md

n ,

2. D is closed with respect to direct sums, and

3. D is closed with respect to unitary equivalence.

Note. If we required D to be closed with respect to similarities, then

D = {M ∈M1 | ‖M‖ < 1}

would not be an nc-domain.

Definition. We say that φ is an nc-function on D if D ⊆Md is an
nc-domain, φ : D →M1, and

1. φ is graded,

2. φ preserves direct sums, and

3.
φ(S−1MS) = S−1φ(M)S

whenever both M and S−1MS are points in D.



nc-Domains and nc-Functions
Definition. We say that D ⊆Md is an nc-domain if

1. for each n ∈ N, D ∩Md
n is open in Md

n ,

2. D is closed with respect to direct sums, and

3. D is closed with respect to unitary equivalence.

Note. If we required D to be closed with respect to similarities, then

D = {M ∈M1 | ‖M‖ < 1}

would not be an nc-domain.

Definition. We say that φ is an nc-function on D if D ⊆Md is an
nc-domain, φ : D →M1, and

1. φ is graded,

2. φ preserves direct sums, and

3.
φ(S−1MS) = S−1φ(M)S

whenever both M and S−1MS are points in D.



nc-Domains and nc-Functions
Definition. We say that D ⊆Md is an nc-domain if

1. for each n ∈ N, D ∩Md
n is open in Md

n ,

2. D is closed with respect to direct sums, and

3. D is closed with respect to unitary equivalence.

Note. If we required D to be closed with respect to similarities, then

D = {M ∈M1 | ‖M‖ < 1}

would not be an nc-domain.

Definition. We say that φ is an nc-function on D if D ⊆Md is an
nc-domain, φ : D →M1, and

1. φ is graded,

2. φ preserves direct sums, and

3.
φ(S−1MS) = S−1φ(M)S

whenever both M and S−1MS are points in D.



nc-Domains and nc-Functions
Definition. We say that D ⊆Md is an nc-domain if

1. for each n ∈ N, D ∩Md
n is open in Md

n ,

2. D is closed with respect to direct sums, and

3. D is closed with respect to unitary equivalence.

Note. If we required D to be closed with respect to similarities, then

D = {M ∈M1 | ‖M‖ < 1}

would not be an nc-domain.

Definition. We say that φ is an nc-function on D if D ⊆Md is an
nc-domain, φ : D →M1, and

1. φ is graded,

2. φ preserves direct sums, and

3.
φ(S−1MS) = S−1φ(M)S

whenever both M and S−1MS are points in D.



nc-Domains and nc-Functions
Definition. We say that D ⊆Md is an nc-domain if

1. for each n ∈ N, D ∩Md
n is open in Md

n ,

2. D is closed with respect to direct sums, and

3. D is closed with respect to unitary equivalence.

Note. If we required D to be closed with respect to similarities, then

D = {M ∈M1 | ‖M‖ < 1}

would not be an nc-domain.

Definition. We say that φ is an nc-function on D if D ⊆Md is an
nc-domain, φ : D →M1, and

1. φ is graded,

2. φ preserves direct sums, and

3.
φ(S−1MS) = S−1φ(M)S

whenever both M and S−1MS are points in D.



nc-Domains and nc-Functions
Definition. We say that D ⊆Md is an nc-domain if

1. for each n ∈ N, D ∩Md
n is open in Md

n ,

2. D is closed with respect to direct sums, and

3. D is closed with respect to unitary equivalence.

Note. If we required D to be closed with respect to similarities, then

D = {M ∈M1 | ‖M‖ < 1}

would not be an nc-domain.

Definition. We say that φ is an nc-function on D if D ⊆Md is an
nc-domain, φ : D →M1, and

1. φ is graded,

2. φ preserves direct sums, and

3.
φ(S−1MS) = S−1φ(M)S

whenever both M and S−1MS are points in D.



nc-Domains and nc-Functions
Definition. We say that D ⊆Md is an nc-domain if

1. for each n ∈ N, D ∩Md
n is open in Md

n ,

2. D is closed with respect to direct sums, and

3. D is closed with respect to unitary equivalence.

Note. If we required D to be closed with respect to similarities, then

D = {M ∈M1 | ‖M‖ < 1}

would not be an nc-domain.

Definition. We say that φ is an nc-function on D if D ⊆Md is an
nc-domain, φ : D →M1, and

1. φ is graded,

2. φ preserves direct sums, and

3.
φ(S−1MS) = S−1φ(M)S

whenever both M and S−1MS are points in D.



nc-Domains and nc-Functions
Definition. We say that D ⊆Md is an nc-domain if

1. for each n ∈ N, D ∩Md
n is open in Md

n ,

2. D is closed with respect to direct sums, and

3. D is closed with respect to unitary equivalence.

Note. If we required D to be closed with respect to similarities, then

D = {M ∈M1 | ‖M‖ < 1}

would not be an nc-domain.

Definition. We say that φ is an nc-function on D if D ⊆Md is an
nc-domain, φ : D →M1, and

1. φ is graded,

2. φ preserves direct sums, and

3.
φ(S−1MS) = S−1φ(M)S

whenever both M and S−1MS are points in D.



nc-Domains and nc-Functions
Definition. We say that D ⊆Md is an nc-domain if

1. for each n ∈ N, D ∩Md
n is open in Md

n ,

2. D is closed with respect to direct sums, and

3. D is closed with respect to unitary equivalence.

Note. If we required D to be closed with respect to similarities, then

D = {M ∈M1 | ‖M‖ < 1}

would not be an nc-domain.

Definition. We say that φ is an nc-function on D if D ⊆Md is an
nc-domain, φ : D →M1, and

1. φ is graded,

2. φ preserves direct sums, and

3.
φ(S−1MS) = S−1φ(M)S

whenever both M and S−1MS are points in D.



nc-Domains and nc-Functions
Definition. We say that D ⊆Md is an nc-domain if

1. for each n ∈ N, D ∩Md
n is open in Md

n ,

2. D is closed with respect to direct sums, and

3. D is closed with respect to unitary equivalence.

Note. If we required D to be closed with respect to similarities, then

D = {M ∈M1 | ‖M‖ < 1}

would not be an nc-domain.

Definition. We say that φ is an nc-function on D if D ⊆Md is an
nc-domain, φ : D →M1, and

1. φ is graded,

2. φ preserves direct sums, and

3.
φ(S−1MS) = S−1φ(M)S

whenever both M and S−1MS are points in D.



Basic Sets and the Free Topology

Definition. By a basic set in Md is meant a set of the form

Gδ = {x ∈Md | ‖δ(x)‖ < 1}

where δ = [δij ] is an I × J rectangular matrix with entries in Pd .

For example, if δ(x1, x2) =

[
x1

x2

]
, then

Gδ = {x ∈M2 | x1∗x1 + x2∗x2 < 1}

is the column ball and if δ(x1, x2) =

[
x1 0
0 x2

]
, then

Gδ = {x ∈M2 | ‖x1‖ < 1 and ‖x2‖ < 1}

is the biball.

Notice that if δ1 and δ2 are matrices of free polynomials, then

Gδ1 ∩ Gδ2 = Gδ1⊕δ2

Definition. The free topology on Md is the topology on Md which
has as a basis the basic open sets.
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Free Topology and Analysis

Let D be an nc-domain and let φ : D →M1 be a graded function.

1. φ is free continuous if φ is continuous when D and M1 are
equipped with the free topology.

2. φ is free locally bounded if for each M ∈ D there exists a free
open set U such that M ∈ U and φ | U ∩ D is bounded.

3. φ is free locally nc if for each M ∈ D there exists a free open set U
such that M ∈ U and φ | U ∩ D is an nc-function.

4. φ is free locally approximable by free polynomials if for each
M ∈ D there exists a free open set U such that for each ε > 0 there
exists a free polynomial p such that

∀x∈U∩D ‖φ(x)− p(x)‖ < ε.

5. φ is analytic if each for each n ∈ N each of the n2 entries of φ(x) is
an analytic function of the dn2 entries of x .
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The Fundamental Equivalence

Theorem. (J. Agler and J. E. McCarthy, Global holomorphic functions in
several non-commuting variables, available on arXiv) Let φ be a graded
function defined on the free domain D. The following conditions are
equivalent.

1. φ is locally bounded and locally nc

2. φ is continuous and locally nc

3. φ is analytic and locally nc

4. φ is locally approximable by free polynomals

2 implies 3 is inspired by one of the many interesting ideas in J.W. Helton, I. Klep, and

S. McCullough’s Proper Analytic Free Maps, J. Funct. Anal. 260 (2011) 14761490.
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Free Holomorphic Functions

Definition. Say a function φ is a free holomorphic function if the
domain of φ is an open set in the free topology and any of the 4
equivalent conditions of the Fundamental Equivalence are satisfied.

Example. Functions defined by power series that converge uniformly and
absolutely on ‘sufficiently fat’ subsets of a domain when the terms of the
series are grouped homogenously.

Example. Free rational functions are free holomorphic functions.

Example. If δ = (x1x2− x2x1)2− 4, then Gδ is a nonempty basic set and

φ(x) =
∞∑
k=1

δ(x)k

k

defines a free holomorphic function on Gδ that is neither rational nor
locally representable by a power series at any point x0 ∈ Gδ.
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Nevanlinna-Pick Interpolation

NP Problem Fix a basic set Gδ ⊆Md , nodes λ1, . . . , λm ∈ Gδ and
targets z1, . . . , zm ∈M1. Does there exist a function φ satisfying

1. φ is free holomorphic on Gδ,

2. supx∈Gδ
‖φ(x)‖ ≤ 1, and

3. φ(λi ) = zi for each i = 1, . . . ,m?

Say an NP problem with nodes λ1, . . . , λm ∈ Gδ and targets
z1, . . . , zm ∈M1 is solvable on Gδ if there exists a φ satisfying 1, 2, and
3 above.



Nevanlinna-Pick Interpolation

NP Problem Fix a basic set Gδ ⊆Md , nodes λ1, . . . , λm ∈ Gδ and
targets z1, . . . , zm ∈M1.

Does there exist a function φ satisfying

1. φ is free holomorphic on Gδ,

2. supx∈Gδ
‖φ(x)‖ ≤ 1, and

3. φ(λi ) = zi for each i = 1, . . . ,m?

Say an NP problem with nodes λ1, . . . , λm ∈ Gδ and targets
z1, . . . , zm ∈M1 is solvable on Gδ if there exists a φ satisfying 1, 2, and
3 above.



Nevanlinna-Pick Interpolation

NP Problem Fix a basic set Gδ ⊆Md , nodes λ1, . . . , λm ∈ Gδ and
targets z1, . . . , zm ∈M1. Does there exist a function φ satisfying

1. φ is free holomorphic on Gδ,

2. supx∈Gδ
‖φ(x)‖ ≤ 1, and

3. φ(λi ) = zi for each i = 1, . . . ,m?

Say an NP problem with nodes λ1, . . . , λm ∈ Gδ and targets
z1, . . . , zm ∈M1 is solvable on Gδ if there exists a φ satisfying 1, 2, and
3 above.



Nevanlinna-Pick Interpolation

NP Problem Fix a basic set Gδ ⊆Md , nodes λ1, . . . , λm ∈ Gδ and
targets z1, . . . , zm ∈M1. Does there exist a function φ satisfying

1. φ is free holomorphic on Gδ,

2. supx∈Gδ
‖φ(x)‖ ≤ 1, and

3. φ(λi ) = zi for each i = 1, . . . ,m?

Say an NP problem with nodes λ1, . . . , λm ∈ Gδ and targets
z1, . . . , zm ∈M1 is solvable on Gδ if there exists a φ satisfying 1, 2, and
3 above.



Nevanlinna-Pick Interpolation

NP Problem Fix a basic set Gδ ⊆Md , nodes λ1, . . . , λm ∈ Gδ and
targets z1, . . . , zm ∈M1. Does there exist a function φ satisfying

1. φ is free holomorphic on Gδ,

2. supx∈Gδ
‖φ(x)‖ ≤ 1, and

3. φ(λi ) = zi for each i = 1, . . . ,m?

Say an NP problem with nodes λ1, . . . , λm ∈ Gδ and targets
z1, . . . , zm ∈M1 is solvable on Gδ if there exists a φ satisfying 1, 2, and
3 above.



Nevanlinna-Pick Interpolation

NP Problem Fix a basic set Gδ ⊆Md , nodes λ1, . . . , λm ∈ Gδ and
targets z1, . . . , zm ∈M1. Does there exist a function φ satisfying

1. φ is free holomorphic on Gδ,

2. supx∈Gδ
‖φ(x)‖ ≤ 1, and

3. φ(λi ) = zi for each i = 1, . . . ,m?

Say an NP problem with nodes λ1, . . . , λm ∈ Gδ and targets
z1, . . . , zm ∈M1 is solvable on Gδ if there exists a φ satisfying 1, 2, and
3 above.



Nevanlinna-Pick Interpolation

NP Problem Fix a basic set Gδ ⊆Md , nodes λ1, . . . , λm ∈ Gδ and
targets z1, . . . , zm ∈M1. Does there exist a function φ satisfying

1. φ is free holomorphic on Gδ,

2. supx∈Gδ
‖φ(x)‖ ≤ 1, and

3. φ(λi ) = zi for each i = 1, . . . ,m?

Say an NP problem with nodes λ1, . . . , λm ∈ Gδ and targets
z1, . . . , zm ∈M1 is solvable on Gδ if there exists a φ satisfying 1, 2, and
3 above.



A Polynomial Solution Without Bounds
Lemma 1. If an NP problem with nodes λ1, . . . , λm ∈ Gδ and targets
z1, . . . , zm ∈M1 is solvable, then it must be solvable (without bounds)
by a free polynomial, i.e.,

∃ζ∈Pd
ζ(λi ) = zi for each i = 1, . . . ,m.

Proof: Let φ be a solution. Form

λ = ⊕m
i=1λi and z = ⊕m

i=1zi .

As φ is holomorphic, in particular, φ preserves direct sums. Hence,

φ(λ) = φ(⊕m
i=1λi ) = ⊕m

i=1φ(λi ) = ⊕m
i=1zi = z .

As φ is holomorphic, in particular φ is locally uniformly approximable by free
polynomials. Hence, there exists a sequence p1, p2, . . . ∈ Pd such that
pk(λ)→ φ(λ) as k →∞. Therefore, if we let

Aλ = {p(λ) | p ∈ Pd},

then
z = φ(λ) = lim

k→∞
pk(λ) ∈ A−λ .

But, as Aλ is finite dimensional, A−λ = Aλ. Therefore, z ∈ Aλ, i.e., there

exists ζ ∈ Pd such that ζ(λ) = z . For this ζ, ζ(λi ) = zi for each i . �
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A Free Variety

A free variety is a set in Md defined as the joint 0-set of a collection of
free polynomials. Ideals that can be associated with these varieties are
studied in ‘Real Nullstellensatz and *-Ideals in *-Algebras’ by J. Cimpric,
J. W. Helton, S. McCullough, and C. Nelson (available on ArXiv)

Let Vλ denote the smallest free variety containing the nodes λ1, . . . , λm,
i.e.,

Vλ = {x ∈Md | p(x) = 0 whenever p(λi ) = 0 for each i}.

Fact. If p is a free polynomial and p(λ) = ζ(λ), then p(x) = ζ(x) for all
x ∈ Vλ.

Lemma 2. If φ is any free holomorphic function on Gλ satisfying
φ(λ) = ζ(λ), then φ(x) = ζ(x) for all x ∈ Vλ ∩ Gδ.
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Necessary Conditions for Solvability

If an NP problem with nodes λ1, . . . , λm ∈ Gδ and targets
z1, . . . , zm ∈M1 is solvable, then necessarily there must be a free
polynomial that interpolates the nodes to the targets, i.e.,

∃ζ∈Pd
ζ(λi ) = zi for each i = 1. . . . ,m.

Furthermore, if ζ is any such polynomial and φ is a solution to the
problem, then since φ(λ) = ζ(λ), Lemma 2 implies that φ = ζ on all of
Vλ. Hence,

sup
x∈Vλ∩Gδ

‖ζ(x)‖ = sup
x∈Vλ∩Gδ

‖φ(x)‖ ≤ 1.

These necessary conditions are sufficient to solve the problem as well.

Since a NP problem, if it is solvable, must be solvable by a polynomial,
we may as well assume that the problem was presented to begin with via
a polynomial, i.e., assume that the targets are given as the values at the
nodes of a free polynomial.
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The Free Nevanlinna-Pick Theorem

Theorem. Fix a basic set Gδ ⊆Md , points λ1, . . . , λm ∈ Gδ and a free
polynomial ζ.

There exists a free holomorphic function φ on Gδ satisfying

sup
x∈Gδ

‖φ(x)‖ ≤ 1 and φ(λi ) = ζ(λi ), i = 1, . . . ,m

if and only if

sup
x∈Vλ∩Gδ

‖ζ(x)‖ ≤ 1.
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Sketch of Proof

1. For each N ∈ N let En = Vλ ∩ Gδ ∩Md
n .

2. Let E [2] = ∪∞n=1En × En.

3. View Pd ⊗ Pd as a space of functions on E [2] by identifying q ⊗ p
with the function h defined by

h(y , x) = q(y)∗p(x), (x , y) ∈ E [2].

Call this space H.

4. Equip H with a locally convex topology so that the Hahn-Banach
Separation Theorem can be applied to probe convex subsets of H.

5. Let C be the wedge in H generated by the elements h ∈ H that have
the form

h(y , x) = p(y)∗(1− δ(y)∗δ(x))p(x), (x , y) ∈ E [2]

for some

p =

p1

...
pJ

 ∈ CJ ⊗ Pd .
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for some

p =

p1

...
pJ

 ∈ CJ ⊗ Pd .
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6. Apply the Hahn-Banach Separation Theorem to wedge C and the
point h = 1− ζ(y)∗ζ(x) to show that the condition,

sup
x∈Vλ∩Gδ

‖ζ(x)‖ ≤ 1,

in the statement of the Free Nevanlinna Pick Theorem implies that
ζ has a δ-model , i.e., there exist free vector-valued polynomials
p1, . . . , pN ∈ CJ ⊗ Pd such that

1− ζ(y)∗ζ(x) =
N∑

k=1

pk(y)∗
(

1− δ(y)∗δ(x)
)
pk(x), (x , y) ∈ E [2].
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7. For each fixed n ∈ N, apply a Lurking Isometry Argument to deduce
the existence of an isometry

Ln =

[
An Bn

Cn Dn

]
: Cn ⊕ (Cn ⊗ CI ⊗ `2)→ Cn ⊕ (Cn ⊗ CJ ⊗ `2)

such that for each x ∈ Vλ ∩ Gδ ∩Md
n ,

ζ(x) = An + Bn (δ(x)⊗ id`2 )
(

1− Dn (δ(x)⊗ id`2 )
)−1

Cn.

8. Exploit the fact that ζ, the entries of δ, and the coefficients
p1, . . . , pN in the model formula for ζ are free polynomials to show
that the highly non-unique isometries Ln of the previous step can be
modified so as to satisfy the additional property that for each n ∈ N,

Ln = idn ⊗ L1.



9. Steps 7. and 8. imply the formula,

ζ(x) = idn⊗A1 +(idn⊗B1)(δ(x)⊗id`2 )
(

1−(idn⊗D1)(δ(x)⊗id`2 )
)−1

(idn⊗C1),

valid for each n ∈ N and each x ∈ Vλ ∩ Gδ ∩Md
n .

10. Define φ on all of Gδ ∩Md
n by the formula,

φ(x) = idn⊗A1 +(idn⊗B1)(δ(x)⊗id`2 )
(

1−(idn⊗D1)(δ(x)⊗id`2 )
)−1

(idn⊗C1),

11. I x ∈ Gδ implies

‖(idn ⊗ D1)(δ(x)⊗ id`2 )‖ < 1.

Therefore, φ is well defined.
I The ⊗,s are in the formula are laid out in such a way that ‘follow

your nose algebra’ guarantees that φ is an nc-function.

I Since L1 =

[
A1 B1

C1 D1

]
is an isometry,

sup
x∈Gδ

‖φ(x)‖ ≤ 1.

I In particular, the Fundamental Theorem implies that φ is a free
holomorphic function.

I The formulas for ζ and φ agree when x ∈ Vλ ∩ Gδ. Therefore, since
λi ∈ Vλ ∩ Gδ for each i , φ(λi ) = ζ(λi ) for each i .


