Two Variable Transfer Function Realizations and Agler Kernels

Kelly Bickel & Greg Knese Washington University in St. Louis St Louis, MO

> Hilbert Function Spaces May 21, 2013

Kelly Bickel & Greg Knese Washington University in St. Louis St Louis, M(Two Variable Transfer Function Realizations and Agler Kernels

One-Variable Transfer Function Realizations

The **Schur class** $\mathcal{S}(\mathbb{D}^d)$ is the set of holomorphic $\phi : \mathbb{D}^d \to \overline{\mathbb{D}}$.

One-Variable Transfer Function Realizations

The Schur class $\mathcal{S}(\mathbb{D}^d)$ is the set of holomorphic $\phi: \mathbb{D}^d \to \overline{\mathbb{D}}$.

Transfer Function Realizations

Let $\phi \in \mathcal{S}(\mathbb{D})$. Then there is a Hilbert space \mathcal{M} and a coisometry $V : \mathbb{C} \oplus \mathcal{M} \to \mathbb{C} \oplus \mathcal{M}$ so that if

$$V = \begin{pmatrix} A & B \\ C & D \end{pmatrix} : \begin{pmatrix} \mathbb{C} \\ \mathcal{M} \end{pmatrix} \to \begin{pmatrix} \mathbb{C} \\ \mathcal{M} \end{pmatrix}$$

then

$$\phi(z) = A + zB(I - zD)^{-1}C \qquad \forall \ z \in \mathbb{D}.$$

This is a transfer function realization of ϕ and \mathcal{M} is the state space.

One-Variable Transfer Function Realizations

The Schur class $\mathcal{S}(\mathbb{D}^d)$ is the set of holomorphic $\phi: \mathbb{D}^d \to \overline{\mathbb{D}}$.

Transfer Function Realizations

Let $\phi \in \mathcal{S}(\mathbb{D})$. Then there is a Hilbert space \mathcal{M} and a coisometry $V : \mathbb{C} \oplus \mathcal{M} \to \mathbb{C} \oplus \mathcal{M}$ so that if

$$V = \begin{pmatrix} A & B \\ C & D \end{pmatrix} : \begin{pmatrix} \mathbb{C} \\ \mathcal{M} \end{pmatrix} \to \begin{pmatrix} \mathbb{C} \\ \mathcal{M} \end{pmatrix}$$

then

$$\phi(z) = A + zB(I - zD)^{-1}C \qquad \forall \ z \in \mathbb{D}.$$

This is a transfer function realization of ϕ and \mathcal{M} is the state space.

Importance

- Connects systems theory, operator theory, and function theory
- \bullet Basis for approaches to function theoretic problems on $\mathbb D$

Notation

1. A function $K : \Omega \times \Omega \to \mathbb{C}$ is a **positive kernel**, i.e. $\forall \{z^1, \dots, z^m\} \subset \Omega$, $\left(K(z^i, z^j)\right)_{i,j=1}^m \ge 0.$

2. A Hilbert space of functions $\mathcal{H}(K)$ is a **reproducing kernel Hilbert space** with kernel K on Ω . The kernel functions $K_w(z) := K(z, w)$ are in $\mathcal{H}(K)$ and

$$\langle f, K_w \rangle_{\mathcal{H}(K)} = f(w) \qquad \forall \ f \in \mathcal{H}(K) \text{ and } w \in \Omega.$$

Each positive kernel K defines a reproducing kernel Hilbert space $\mathcal{H}(K)$.

Notation

1. A function $K : \Omega \times \Omega \to \mathbb{C}$ is a **positive kernel**, i.e. $\forall \{z^1, \dots, z^m\} \subset \Omega$, $\left(K(z^i, z^j)\right)_{i,j=1}^m \ge 0.$

2. A Hilbert space of functions $\mathcal{H}(K)$ is a **reproducing kernel Hilbert space** with kernel K on Ω . The kernel functions $K_w(z) := K(z, w)$ are in $\mathcal{H}(K)$ and

$$\langle f, K_w \rangle_{\mathcal{H}(K)} = f(w) \qquad \forall \ f \in \mathcal{H}(K) \text{ and } w \in \Omega.$$

Each positive kernel K defines a reproducing kernel Hilbert space $\mathcal{H}(K)$.

Example. If $\phi \in \mathcal{S}(\mathbb{D})$, then

$$\mathcal{H}\left(rac{1-\phi(z)\overline{\phi(w)}}{1-zar{w}}
ight)$$

is the de Branges-Rovnyak space associated to ϕ .

de Branges-Rovnyak Spaces

Let \mathcal{H}_{ϕ} be the de Branges-Rovnyak space and \mathcal{K}_{ϕ} the reproducing kernel. Then

$$\mathcal{H}_\phi := \mathcal{H}(\mathcal{K}_\phi) = \mathcal{H}\left(rac{1-\phi(z)\overline{\phi(w)}}{1-zar{w}}
ight).$$

The functions ${\mathcal K}_w(z):={\mathcal K}_\phi(z,w)$ are in ${\mathcal H}_\phi$ and

$$1-\phi(z)\overline{\phi(w)}=(1-z\bar{w})K_{\phi}(z,w)=(1-z\bar{w})\langle K_{w},K_{z}\rangle_{\mathcal{H}_{\phi}}\quad\forall\ z,w\in\mathbb{D}.$$

de Branges-Rovnyak Spaces

Let \mathcal{H}_{ϕ} be the de Branges-Rovnyak space and \mathcal{K}_{ϕ} the reproducing kernel. Then

$$\mathcal{H}_\phi := \mathcal{H}(\mathsf{K}_\phi) = \mathcal{H}\left(rac{1-\phi(z)\overline{\phi(w)}}{1-zar{w}}
ight).$$

The functions $\mathcal{K}_w(z) := \mathcal{K}_\phi(z,w)$ are in \mathcal{H}_ϕ and

$$1-\phi(z)\overline{\phi(w)}=(1-z\bar{w})K_{\phi}(z,w)=(1-z\bar{w})\langle K_{w},K_{z}\rangle_{\mathcal{H}_{\phi}}\quad\forall\ z,w\in\mathbb{D}.$$

Construction

Define

$$V: \left(\begin{array}{c}1\\\bar{w}K_w\end{array}\right) \to \left(\begin{array}{c}\overline{\phi(w)}\\K_w\end{array}\right) \qquad \forall \ w \in \mathbb{D}.$$

V is isometric and extends to an isometry on $\mathbb{C} \oplus \mathcal{H}_{\phi}$. Then ϕ has a transfer function realization with V^* and \mathcal{H}_{ϕ} is the state space.

One-Variable Extensions

Question: When does the transfer function realization extend to $\mathbb{T}?$

Question: When does the transfer function realization extend to $\mathbb{T}?$

Theorem 1 (Sz.-Nagy & Foias, 1970)

Let $\phi \in \mathcal{S}(\mathbb{D})$ and let X be an open set of \mathbb{T} . Then TFAE:

- (i) Every function in \mathcal{H}_{ϕ} can be analytically continued across X.
- (ii) ϕ can be analytically continued across X with unit modulus on X.

Question: When does the transfer function realization extend to $\mathbb{T}?$

Theorem 1 (Sz.-Nagy & Foias, 1970)

Let $\phi \in \mathcal{S}(\mathbb{D})$ and let X be an open set of \mathbb{T} . Then TFAE:

- (i) Every function in \mathcal{H}_{ϕ} can be analytically continued across X.
- (ii) ϕ can be analytically continued across X with unit modulus on X.

Note: Replace (ii) with " ϕ extends continuously to X and with unit modulus on X." Also, $K_{\phi}(z, w)$ extends continuously to $X \times X$.

Conclusion: If ϕ extends continuously to X with unit modulus, then

$$\phi(z) = A + zBK_z \qquad \forall \ z \in \mathbb{D} \cup X.$$

Main Question:

How does this extension result generalize to two-variables?

Two-Variable Realizations

Let $\mathcal{M} = \mathcal{M}_1 \oplus \mathcal{M}_2$ be a Hilbert space and define $E_z : \mathcal{M} \to \mathcal{M}$ by

$$E_z = \left(egin{array}{cc} z_1 I_{\mathcal{M}_1} & 0 \ 0 & z_2 I_{\mathcal{M}_2} \end{array}
ight) \qquad orall \ z \in \mathbb{D}^2.$$

Two-Variable Realizations

Let $\mathcal{M} = \mathcal{M}_1 \oplus \mathcal{M}_2$ be a Hilbert space and define $E_z : \mathcal{M} \to \mathcal{M}$ by

$$E_z = \begin{pmatrix} z_1 I_{\mathcal{M}_1} & 0 \\ 0 & z_2 I_{\mathcal{M}_2} \end{pmatrix} \qquad \forall \ z \in \mathbb{D}^2.$$

Transfer Function Realizations (Agler '90)

 $\phi \in \mathcal{S}(\mathbb{D}^2)$ iff there is a Hilbert space $\mathcal{M} = \mathcal{M}_1 \oplus \mathcal{M}_2$ and a coisometry $V : \mathbb{C} \oplus \mathcal{M} \to \mathbb{C} \oplus \mathcal{M}$ such that if

$$V = \left(\begin{array}{cc} A & B \\ C & D \end{array}\right) : \left(\begin{array}{c} \mathbb{C} \\ \mathcal{M} \end{array}\right) \to \left(\begin{array}{c} \mathbb{C} \\ \mathcal{M} \end{array}\right)$$

then

$$\phi(z) = A + BE_z \left(I - DE_z\right)^{-1} C \qquad \forall \ z \in \mathbb{D}^2.$$

This is a transfer function realization of ϕ and $\mathcal{M}_1 \oplus \mathcal{M}_2$ is the state space.

Two-Variable Realizations

Let $\mathcal{M} = \mathcal{M}_1 \oplus \mathcal{M}_2$ be a Hilbert space and define $E_z : \mathcal{M} \to \mathcal{M}$ by

$$E_z = \begin{pmatrix} z_1 I_{\mathcal{M}_1} & 0 \\ 0 & z_2 I_{\mathcal{M}_2} \end{pmatrix} \qquad \forall \ z \in \mathbb{D}^2.$$

Transfer Function Realizations (Agler '90)

 $\phi \in \mathcal{S}(\mathbb{D}^2)$ iff there is a Hilbert space $\mathcal{M} = \mathcal{M}_1 \oplus \mathcal{M}_2$ and a coisometry $V : \mathbb{C} \oplus \mathcal{M} \to \mathbb{C} \oplus \mathcal{M}$ such that if

$$V = \left(\begin{array}{cc} A & B \\ C & D \end{array}\right) : \left(\begin{array}{c} \mathbb{C} \\ \mathcal{M} \end{array}\right) \to \left(\begin{array}{c} \mathbb{C} \\ \mathcal{M} \end{array}\right)$$

then

$$\phi(z) = A + BE_z \left(I - DE_z\right)^{-1} C \qquad \forall \ z \in \mathbb{D}^2.$$

This is a transfer function realization of ϕ and $\mathcal{M}_1 \oplus \mathcal{M}_2$ is the state space.

Uses

- Technique for generalizing function theoretic results from \mathbb{D} to \mathbb{D}^2 .
- \bullet Provides method to construct functions on \mathbb{D}^2 with desired properties.

Structure of Realizations

In one-variable:

$$1-\phi(z)\overline{\phi(w)}=(1-z\overline{w})K_{\phi}(z,w).$$

Structure of Realizations

In one-variable:

$$1-\phi(z)\overline{\phi(w)}=(1-z\overline{w})K_{\phi}(z,w).$$

Two-variable Generalization (Agler, '90)

Let $\phi \in \mathcal{S}(\mathbb{D}^2)$. Then there are positive kernels K_1 and K_2 such that

$$1-\phi(z)\overline{\phi(w)}=(1-z_1\overline{w}_1)K_1(z,w)+(1-z_2\overline{w}_2)K_2(z,w).$$

 (K_1, K_2) are called **Agler kernels** of ϕ .

Structure of Realizations

In one-variable:

$$1-\phi(z)\overline{\phi(w)}=(1-z\overline{w})K_{\phi}(z,w).$$

Two-variable Generalization (Agler, '90)

Let $\phi \in \mathcal{S}(\mathbb{D}^2)$. Then there are positive kernels K_1 and K_2 such that

$$1-\phi(z)\overline{\phi(w)}=(1-z_1\overline{w}_1)K_1(z,w)+(1-z_2\overline{w}_2)K_2(z,w).$$

 (K_1, K_2) are called **Agler kernels** of ϕ .

Construction

Define $K_{j,w}(z) := K_j(z,w)$ and

$$V: \left(egin{array}{c} 1 \ ar{w_1}\mathcal{K}_{1,w} \ ar{w_2}\mathcal{K}_{2,w} \end{array}
ight)
ightarrow \left(egin{array}{c} \overline{\phi(w)} \ \mathcal{K}_{1,w} \ \mathcal{K}_{2,w} \end{array}
ight) \qquad orall \ w\in \mathbb{D}^2.$$

V extends isometrically to $\mathbb{C} \oplus \mathcal{H}(K_1) \oplus \mathcal{H}(K_2)$ ($\oplus \mathcal{H}$). Then *V*^{*} is the desired coisometry with state space $\mathcal{H}(K_1) \oplus \mathcal{H}(K_2) \oplus \mathcal{H}$.

Interpreting Agler Kernel

Setup. If (K_1, K_2) are Agler kernels of ϕ , then

$$\frac{1-\phi(z)\overline{\phi(w)}}{(1-z_1\bar{w}_1)(1-z_2\bar{w}_2)} = \frac{K_2(z,w)}{1-z_1\bar{w}_1} + \frac{K_1(z,w)}{1-z_2\bar{w}_2}$$

Interpreting Agler Kernel

Setup. If (K_1, K_2) are Agler kernels of ϕ , then

$$\frac{1-\phi(z)\overline{\phi(w)}}{(1-z_1\bar{w}_1)(1-z_2\bar{w}_2)} = \frac{K_2(z,w)}{1-z_1\bar{w}_1} + \frac{K_1(z,w)}{1-z_2\bar{w}_2}$$

Characterization. As each term is a positive kernel:

$$\mathcal{H}_{\phi} := \mathcal{H}\left(rac{1-\phi(z)\overline{\phi(w)}}{(1-z_1ar{w}_1)(1-z_2ar{w}_2)}
ight) \hspace{2mm} \mathcal{H}_1 := \mathcal{H}\left(rac{\mathcal{K}_2(z,w)}{1-z_1ar{w}_1}
ight) \hspace{2mm} \mathcal{H}_2 := \mathcal{H}\left(rac{\mathcal{K}_1(z,w)}{1-z_2ar{w}_2}
ight)$$

 \mathcal{H}_{ϕ} is the two-variable **de Branges-Rovnyak space associated to** ϕ and

- (1) The kernels of the H_i add to the kernel of \mathcal{H}_{ϕ} .
- (2) $z_j H_j \subseteq H_j$ and multiplication by z_j is a contraction.

Interpreting Agler Kernel

Setup. If (K_1, K_2) are Agler kernels of ϕ , then

$$\frac{1-\phi(z)\overline{\phi(w)}}{(1-z_1\bar{w}_1)(1-z_2\bar{w}_2)} = \frac{K_2(z,w)}{1-z_1\bar{w}_1} + \frac{K_1(z,w)}{1-z_2\bar{w}_2}$$

Characterization. As each term is a positive kernel:

$$\mathcal{H}_{\phi} := \mathcal{H}\left(\frac{1-\phi(z)\overline{\phi(w)}}{(1-z_1\bar{w}_1)(1-z_2\bar{w}_2)}\right) \quad \mathcal{H}_1 := \mathcal{H}\left(\frac{\mathcal{K}_2(z,w)}{1-z_1\bar{w}_1}\right) \quad \mathcal{H}_2 := \mathcal{H}\left(\frac{\mathcal{K}_1(z,w)}{1-z_2\bar{w}_2}\right)$$

 \mathcal{H}_{ϕ} is the two-variable de Branges-Rovnyak space associated to ϕ and

- (1) The kernels of the H_i add to the kernel of \mathcal{H}_{ϕ} .
- (2) $z_j H_j \subseteq H_j$ and multiplication by z_j is a contraction.

Idea: If H_1 and H_2 satisfy (1) and (2), then the numerators of their reproducing kernels are Agler kernels of ϕ .

Construction of Agler Kernels I

Ball, Sadosky, & Vinnikov's Work

$$\mathcal{K}_{\phi} = \left\{ \left[\begin{array}{c} f \\ g \end{array} \right] : f \in \mathcal{H}^2, g \in \mathcal{L}^2 \ominus \mathcal{H}^2, f - \phi g \in (1 - |\phi|^2)^{1/2} \mathcal{L}^2 \right\} \subseteq \operatorname{Im} \left[\begin{array}{c} I & \phi \\ \overline{\phi} & I \end{array} \right]^{1/2}$$

where L^2 is the space of measurable, square-integrable functions on \mathbb{T}^2 and H^2 is the Hardy space on \mathbb{D}^2 . Then

$$\mathcal{K}_{\phi} = S_1^{\textit{max}} \oplus S_2^{\textit{min}}$$

where S_1^{max} is the largest z_1 -invariant subspace of \mathcal{K}_{ϕ} and $S_2^{min} := \mathcal{K}_{\phi} \ominus S_1^{max}$.

Construction of Agler Kernels I

Ball, Sadosky, & Vinnikov's Work

$$\mathcal{K}_{\phi} = \left\{ \left[\begin{array}{c} f \\ g \end{array} \right] : f \in \mathcal{H}^2, g \in \mathcal{L}^2 \ominus \mathcal{H}^2, f - \phi g \in (1 - |\phi|^2)^{1/2} \mathcal{L}^2 \right\} \subseteq \operatorname{Im} \left[\begin{array}{c} I & \phi \\ \overline{\phi} & I \end{array} \right]^{1/2}$$

where L^2 is the space of measurable, square-integrable functions on \mathbb{T}^2 and H^2 is the Hardy space on \mathbb{D}^2 . Then

$$\mathcal{K}_{\phi} = S_1^{\textit{max}} \oplus S_2^{\textit{min}}$$

where S_1^{max} is the largest z_1 -invariant subspace of \mathcal{K}_{ϕ} and $S_2^{min} := \mathcal{K}_{\phi} \ominus S_1^{max}$.

Lemma 1 (Ball-Sadosky-Vinnikov, '05)

$$z_1S_1^{max} \subseteq S_1^{max}$$
 $z_2S_2^{min} \subseteq S_2^{min}$

Multiplication by z_1 and z_2 are isometries on S_1^{max} and S_2^{min} respectively.

Construction of Agler Kernels II

There is a surjective, partial isometry $T : \mathcal{K}_{\phi} \to \mathcal{H}_{\phi}$.

$$H_1 := T(S_1^{max})$$
 and $H_2 := T(S_2^{min})$.

Construction of Agler Kernels II

There is a surjective, partial isometry $T : \mathcal{K}_{\phi} \to \mathcal{H}_{\phi}$.

$$H_1 := T(S_1^{max})$$
 and $H_2 := T(S_2^{min})$.

If H_1 and H_2 are endowed with certain inner products, then

$$z_1H_1 \subseteq H_1$$
 and $z_2H_2 \subseteq H_2$

and the multiplication operators are contractions. Then, there are kernels K_1^{max} and K_2^{min} such that

$$H_1 = \mathcal{H}\left(\frac{K_1^{max}(z,w)}{1-z_1\bar{w}_1}\right) \quad \text{and} \quad H_2 = \mathcal{H}\left(\frac{K_2^{min}(z,w)}{1-z_2\bar{w}_2}\right)$$

Also, the kernels of H_1 and H_2 add to the kernel of \mathcal{H}_{ϕ} .

Construction of Agler Kernels II

There is a surjective, partial isometry $T : \mathcal{K}_{\phi} \to \mathcal{H}_{\phi}$.

$$H_1 := T(S_1^{max})$$
 and $H_2 := T(S_2^{min})$.

If H_1 and H_2 are endowed with certain inner products, then

$$z_1H_1 \subseteq H_1$$
 and $z_2H_2 \subseteq H_2$

and the multiplication operators are contractions. Then, there are kernels K_1^{max} and K_2^{min} such that

$$H_1 = \mathcal{H}\left(\frac{K_1^{max}(z,w)}{1-z_1\bar{w}_1}\right) \quad \text{and} \quad H_2 = \mathcal{H}\left(\frac{K_2^{min}(z,w)}{1-z_2\bar{w}_2}\right)$$

Also, the kernels of H_1 and H_2 add to the kernel of \mathcal{H}_{ϕ} .

Conclusion: (K_1^{max}, K_2^{min}) are concrete Agler kernels of ϕ with specific structure.

Extensions of Kernels and Realizations

Theorem 1: Agler Kernel Extensions

Let $\phi \in \mathcal{S}(\mathbb{D}^2)$ and let X be an open set of \mathbb{T}^2 . Then TFAE:

- (i) The functions in $\mathcal{H}(K_1^{max})$ and $\mathcal{H}(K_2^{min})$ extend analytically to a domain Ω containing X.
- (ii) ϕ extends continuously to X and has unit norm there.

Given either condition, the kernels K_1^{max} and K_2^{min} extend continuously to $X \times X$.

Extensions of Kernels and Realizations

Theorem 1: Agler Kernel Extensions

Let $\phi \in \mathcal{S}(\mathbb{D}^2)$ and let X be an open set of \mathbb{T}^2 . Then TFAE:

- (i) The functions in $\mathcal{H}(K_1^{max})$ and $\mathcal{H}(K_2^{min})$ extend analytically to a domain Ω containing X.
- (ii) ϕ extends continuously to X and has unit norm there.

Given either condition, the kernels K_1^{max} and K_2^{min} extend continuously to $X \times X$.

Conclusion: If ϕ extends continuously to $X \subseteq \mathbb{T}^2$ with unit modulus, then its transfer function realization associated to $\mathcal{H}(K_2^{\min}) \oplus \mathcal{H}(K_1^{\max})$ extends to X.

Thank you!