
Two Variable Transfer Function Realizations and Agler
Kernels

Kelly Bickel & Greg Knese
Washington University in St. Louis

St Louis, MO

Hilbert Function Spaces
May 21, 2013

Kelly Bickel & Greg Knese Washington University in St. Louis St Louis, MO Two Variable Transfer Function Realizations and Agler Kernels



One-Variable Transfer Function Realizations

The Schur class S(Dd) is the set of holomorphic φ : Dd → D.

Transfer Function Realizations

Let φ ∈ S(D). Then there is a Hilbert space M and a coisometry
V : C⊕M→ C⊕M so that if

V =

(
A B
C D

)
:

(
C
M

)
→
(

C
M

)
then

φ(z) = A + zB (I − zD)−1 C ∀ z ∈ D.

This is a transfer function realization of φ and M is the state space.

Importance

Connects systems theory, operator theory, and function theory

Basis for approaches to function theoretic problems on D
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Notation

1. A function K : Ω× Ω→ C is a positive kernel, i.e. ∀ {z1, . . . , zm} ⊂ Ω,(
K (z i , z j)

)m
i,j=1

≥ 0.

2. A Hilbert space of functions H(K ) is a reproducing kernel Hilbert space
with kernel K on Ω. The kernel functions Kw (z) := K (z ,w) are in H(K ) and

〈f ,Kw 〉H(K) = f (w) ∀ f ∈ H(K ) and w ∈ Ω.

Each positive kernel K defines a reproducing kernel Hilbert space H(K ).

Example. If φ ∈ S(D), then

H

(
1− φ(z)φ(w)

1− zw̄

)
is the de Branges-Rovnyak space associated to φ.
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Constructing Realizations

de Branges-Rovnyak Spaces

Let Hφ be the de Branges-Rovnyak space and Kφ the reproducing kernel. Then

Hφ := H(Kφ) = H

(
1− φ(z)φ(w)

1− zw̄

)
.

The functions Kw (z) := Kφ(z ,w) are in Hφ and

1− φ(z)φ(w) = (1− zw̄)Kφ(z ,w) = (1− zw̄)〈Kw ,Kz〉Hφ
∀ z ,w ∈ D.

Construction

Define

V :

(
1

w̄Kw

)
→
(
φ(w)
Kw

)
∀ w ∈ D.

V is isometric and extends to an isometry on C⊕Hφ. Then φ has a transfer
function realization with V ∗ and Hφ is the state space.

Kelly Bickel & Greg Knese Washington University in St. Louis St Louis, MO Two Variable Transfer Function Realizations and Agler Kernels



Constructing Realizations

de Branges-Rovnyak Spaces

Let Hφ be the de Branges-Rovnyak space and Kφ the reproducing kernel. Then

Hφ := H(Kφ) = H

(
1− φ(z)φ(w)

1− zw̄

)
.

The functions Kw (z) := Kφ(z ,w) are in Hφ and

1− φ(z)φ(w) = (1− zw̄)Kφ(z ,w) = (1− zw̄)〈Kw ,Kz〉Hφ
∀ z ,w ∈ D.

Construction

Define

V :

(
1

w̄Kw

)
→
(
φ(w)
Kw

)
∀ w ∈ D.

V is isometric and extends to an isometry on C⊕Hφ. Then φ has a transfer
function realization with V ∗ and Hφ is the state space.

Kelly Bickel & Greg Knese Washington University in St. Louis St Louis, MO Two Variable Transfer Function Realizations and Agler Kernels



One-Variable Extensions

Question: When does the transfer function realization extend to T?

Theorem 1 (Sz.-Nagy & Foias, 1970)

Let φ ∈ S(D) and let X be an open set of T. Then TFAE:

(i) Every function in Hφ can be analytically continued across X .

(ii) φ can be analytically continued across X with unit modulus on X .

Note: Replace (ii) with “φ extends continuously to X and with unit modulus on
X .” Also, Kφ(z ,w) extends continuously to X × X .

Conclusion: If φ extends continuously to X with unit modulus, then

φ(z) = A + zBKz ∀ z ∈ D ∪ X .
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Question

Main Question:

How does this extension result generalize to
two-variables?
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Two-Variable Realizations

Let M =M1 ⊕M2 be a Hilbert space and define Ez :M→M by

Ez =

(
z1IM1 0

0 z2IM2

)
∀ z ∈ D2.

Transfer Function Realizations (Agler ’90)

φ ∈ S(D2) iff there is a Hilbert space M =M1 ⊕M2 and a coisometry
V : C⊕M→ C⊕M such that if

V =

(
A B
C D

)
:

(
C
M

)
→
(

C
M

)
then

φ(z) = A + BEz (I − DEz)−1 C ∀ z ∈ D2.

This is a transfer function realization of φ and M1 ⊕M2 is the state space.

Uses

Technique for generalizing function theoretic results from D to D2.

Provides method to construct functions on D2 with desired properties.
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Structure of Realizations

In one-variable:

1− φ(z)φ(w) = (1− zw̄)Kφ(z ,w).

Two-variable Generalization (Agler, ’90)

Let φ ∈ S(D2). Then there are positive kernels K1 and K2 such that

1− φ(z)φ(w) = (1− z1w̄1)K1(z ,w) + (1− z2w̄2)K2(z ,w).

(K1,K2) are called Agler kernels of φ.

Construction

Define Kj,w (z) := Kj(z ,w) and

V :

 1
w̄1K1,w

w̄2K2,w

→
 φ(w)

K1,w

K2,w

 ∀ w ∈ D2.

V extends isometrically to C⊕H(K1)⊕H(K2) ( ⊕H) . Then V ∗ is the desired
coisometry with state space H(K1)⊕H(K2)⊕H.
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Interpreting Agler Kernel

Setup. If (K1,K2) are Agler kernels of φ, then

1− φ(z)φ(w)

(1− z1w̄1)(1− z2w̄2)
=

K2(z ,w)

1− z1w̄1
+

K1(z ,w)

1− z2w̄2
.

Characterization. As each term is a positive kernel:

Hφ := H

(
1− φ(z)φ(w)

(1− z1w̄1)(1− z2w̄2)

)
H1 := H

(
K2(z ,w)

1− z1w̄1

)
H2 := H

(
K1(z ,w)

1− z2w̄2

)
.

Hφ is the two-variable de Branges-Rovnyak space associated to φ and

(1) The kernels of the Hj add to the kernel of Hφ.

(2) zjHj ⊆ Hj and multiplication by zj is a contraction.

Idea: If H1 and H2 satisfy (1) and (2), then the numerators of their reproducing
kernels are Agler kernels of φ.
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Construction of Agler Kernels I

Ball, Sadosky, & Vinnikov’s Work

Kφ =

{[
f
g

]
: f ∈ H2, g ∈ L2 	 H2, f − φg ∈ (1− |φ|2)1/2L2

}
⊆ Im

[
I φ

φ I

]1/2
,

where L2 is the space of measurable, square-integrable functions on T2 and H2 is
the Hardy space on D2. Then

Kφ = Smax
1 ⊕ Smin

2

where Smax
1 is the largest z1-invariant subspace of Kφ and Smin

2 := Kφ 	 Smax
1 .

Lemma 1 (Ball-Sadosky-Vinnikov, ’05)

z1S
max
1 ⊆ Smax

1 z2S
min
2 ⊆ Smin

2

Multiplication by z1 and z2 are isometries on Smax
1 and Smin

2 respectively.
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Construction of Agler Kernels II

There is a surjective, partial isometry T : Kφ → Hφ.

H1 := T (Smax
1 ) and H2 := T (Smin

2 ).

If H1 and H2 are endowed with certain inner products, then

z1H1 ⊆ H1 and z2H2 ⊆ H2

and the multiplication operators are contractions. Then, there are kernels Kmax
1

and Kmin
2 such that

H1 = H
(
Kmax
1 (z ,w)

1− z1w̄1

)
and H2 = H

(
Kmin
2 (z ,w)

1− z2w̄2

)
.

Also, the kernels of H1 and H2 add to the kernel of Hφ.

Conclusion: (Kmax
1 ,Kmin

2 ) are concrete Agler kernels of φ with specific
structure.
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Extensions of Kernels and Realizations

Theorem 1: Agler Kernel Extensions

Let φ ∈ S(D2) and let X be an open set of T2. Then TFAE:

(i) The functions in H(Kmax
1 ) and H(Kmin

2 ) extend analytically to a domain Ω
containing X .

(ii) φ extends continuously to X and has unit norm there.

Given either condition, the kernels Kmax
1 and Kmin

2 extend continuously to X × X .

Conclusion: If φ extends continuously to X ⊆ T2 with unit modulus, then its
transfer function realization associated to H(Kmin

2 )⊕H(Kmax
1 ) extends to X .
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Thank you!
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