Generalized Hardy spaces in \mathbb{R}^d , products, paraproducts and div-curl lemma.

Aline Bonami

Université d'Orléans

Gargnano, May 20, 2013

Products of functions in $\mathcal{H}^1(\mathbb{R}^d)$ and BMO. Let $b \in BMO(\mathbb{R}^d)$

$$\|b\|_{ ext{BMO}} := \sup_{Q} rac{1}{|Q|} \int_{Q} |b - b_{Q}| dx < \infty,$$

Products of functions in $\mathcal{H}^1(\mathbb{R}^d)$ and BMO. Let $b \in BMO(\mathbb{R}^d)$

$$\|b\|_{ ext{BMO}} := \sup_{Q} rac{1}{|Q|} \int_{Q} |b - b_{Q}| \, dx < \infty,$$

Let $h \in \mathcal{H}^1(\mathbb{R}^d)$ with $\|h\|_{\mathcal{H}^1} := \|\mathcal{M}h\|_1 < \infty$ where $\mathcal{M}h = \sup_{t>0} |\varphi_t * h|$, with φ smooth and compactly supported, $\int \varphi = 1$, $\varphi_t(x) := t^{-d}\varphi(x/t)$.

Products of functions in $\mathcal{H}^1(\mathbb{R}^d)$ and BMO. Let $b \in BMO(\mathbb{R}^d)$

$$\|b\|_{ ext{BMO}} := \sup_{Q} rac{1}{|Q|} \int_{Q} |b - b_{Q}| \, dx < \infty,$$

Let $h \in \mathcal{H}^1(\mathbb{R}^d)$ with $\|h\|_{\mathcal{H}^1} := \|\mathcal{M}h\|_1 < \infty$ where $\mathcal{M}h = \sup_{t>0} |\varphi_t * h|$, with φ smooth and compactly supported, $\int \varphi = 1$, $\varphi_t(x) := t^{-d}\varphi(x/t)$.

Theorem [B., Iwaniec, Jones, Zinsmeister 2007] [B., Grellier, Ky 2012]. The product $b \times h$, with $b \in BMO$ and $h \in H^1$ can be given a meaning as a distribution, and there are two bilinear operators, S and T, such that bh = S(b, h) + T(b, h), with S and T continuous operators,

 $S: BMO \times \mathcal{H}^1 \mapsto L^1(\mathbb{R}^d), \qquad T: BMO \times \mathcal{H}^1 \mapsto \mathcal{H}^{\mathsf{log}}(\mathbb{R}^d).$

What is \mathcal{H}^{\log} ?

$$\mathcal{H}^{\mathsf{log}} := \{f \in \mathcal{S}'(\mathbb{R}^d) \ ; \ \int_{\mathbb{R}^d} rac{\mathcal{M}f(x)}{\log(e+|x|) + \log(e+\mathcal{M}f(x))} dx < \infty. \}.$$

◆□ →
◆□ →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
● →
<

What is \mathcal{H}^{\log} ?

$$\mathcal{H}^{\mathsf{log}} := \{f \in \mathcal{S}'(\mathbb{R}^d) \ ; \ \int_{\mathbb{R}^d} rac{\mathcal{M}f(x)}{\mathsf{log}(e+|x|) + \mathsf{log}(e+\mathcal{M}f(x))} dx < \infty. \}.$$

Particular case of Hardy-Orlicz spaces of Musielak type introduced by Luong Dang Ky: For $\Phi(x, t)$ having adequate properties, L^{Φ} is the space of functions such that

$$\int_{\mathbb{R}^d} \Phi(x, |f(x)|) dx < \infty.$$

 \mathcal{H}^{Φ} is the space of $f \in \mathcal{S}'$ such that $\mathcal{M}f \in L^{\Phi}$.

What is \mathcal{H}^{\log} ?

$$\mathcal{H}^{\mathsf{log}} := \{f \in \mathcal{S}'(\mathbb{R}^d) \ ; \ \int_{\mathbb{R}^d} rac{\mathcal{M}f(x)}{\mathsf{log}(e+|x|) + \mathsf{log}(e+\mathcal{M}f(x))} dx < \infty. \}.$$

Particular case of Hardy-Orlicz spaces of Musielak type introduced by Luong Dang Ky: For $\Phi(x, t)$ having adequate properties, L^{Φ} is the space of

For $\Psi(x, t)$ having adequate properties, L^* is the space of functions such that

$$\int_{\mathbb{R}^d} \Phi(x, |f(x)|) dx < \infty.$$

 \mathcal{H}^{Φ} is the space of $f \in \mathcal{S}'$ such that $\mathcal{M}f \in L^{\Phi}$.

For
$$\mathcal{H}^{\log}$$
, we have $\Phi(x,t) = rac{t}{\log(e+|x|) + \log(e+t)}$.

For Φ depending only on *t*, Hardy-Orlicz spaces, studied by Janson, Viviani.

For $\Phi(x, t) = w(x)t$, weighted Hardy space.

For Φ depending only on t, Hardy-Orlicz spaces, studied by Janson, Viviani.

For $\Phi(x, t) = w(x)t$, weighted Hardy space.

Assumptions on Φ :

 $(x,t) \mapsto \Phi(x,t)$ such that $x \mapsto \Phi(x,t)$ is uniformly in the weight class (A_{∞}) .

For Φ depending only on t, Hardy-Orlicz spaces, studied by Janson, Viviani.

For $\Phi(x, t) = w(x)t$, weighted Hardy space.

Assumptions on Φ :

 $(x,t)\mapsto \Phi(x,t)$ such that $x\mapsto \Phi(x,t)$ is uniformly in the weight class (A_{∞}) .

 $t \mapsto \Phi(x, t)$ is uniformly a growth function:

- of lower type p < 1: $\Phi(x, st) \leq Cs^{p}\Phi(x, t)$ for s < 1.
- of upper type 1: $\Phi(x, st) \leq Cs^{p}\Phi(x, t)$ for s > 1.

For Φ depending only on *t*, Hardy-Orlicz spaces, studied by Janson, Viviani.

For $\Phi(x, t) = w(x)t$, weighted Hardy space.

Assumptions on Φ :

 $(x,t)\mapsto \Phi(x,t)$ such that $x\mapsto \Phi(x,t)$ is uniformly in the weight class (A_∞) .

 $t \mapsto \Phi(x, t)$ is uniformly a growth function:

- of lower type p < 1: $\Phi(x, st) \leq Cs^p \Phi(x, t)$ for s < 1.
- of upper type 1: $\Phi(x, st) \leq Cs^{p}\Phi(x, t)$ for s > 1.

Luxembourg norm:

$$\|f\|_{L^{\Phi}} := \inf \left\{ \lambda > 0 : \int \Phi \left(x, \frac{|f(x)|}{\lambda} \right) dx \leq 1 \right\}.$$

Theorem [Ky]. The space \mathcal{H}^{Φ} has an atomic decomposition. Its dual is the space \mathbb{BMO}^{Φ} . When $p > \frac{n}{n+1}$, b is in \mathbb{BMO}^{Φ} if and only if

$$\sup_{Q}\frac{1}{\|\chi_{Q}\|_{L^{\Phi}}}\int_{Q}|b-b_{Q}|\,dx<\infty.$$

Theorem [Ky]. The space \mathcal{H}^{Φ} has an atomic decomposition. Its dual is the space $\mathbb{B}MO^{\Phi}$. When $p > \frac{n}{n+1}$, b is in $\mathbb{B}MO^{\Phi}$ if and only if

$$\sup_{Q}\frac{1}{\|\chi_{Q}\|_{L^{\Phi}}}\int_{Q}|b-b_{Q}|\,dx<\infty.$$

 $\operatorname{BMO}^{\mathsf{log}}$ already considered by Nakai and Yabuta:

For $b \in BMO$, multiplication by b maps $BMO^{\log} \cap L^{\infty}$ into BMO. $\|\chi_Q\|_{L^{\log}}$ can be replaced by $\frac{|Q|}{\log(e+|x_Q|)+|\log(|Q|)|}$, with x_Q the center of Q.

Theorem [Ky]. The space \mathcal{H}^{Φ} has an atomic decomposition. Its dual is the space $\mathbb{B}MO^{\Phi}$. When $p > \frac{n}{n+1}$, b is in $\mathbb{B}MO^{\Phi}$ if and only if

$$\sup_{Q}\frac{1}{\|\chi_{Q}\|_{L^{\Phi}}}\int_{Q}|b-b_{Q}|\,dx<\infty.$$

 $\operatorname{BMO}^{\mathsf{log}}$ already considered by Nakai and Yabuta:

For $b \in BMO$, multiplication by b maps $BMO^{\log} \cap L^{\infty}$ into BMO. $\|\chi_Q\|_{L^{\log}}$ can be replaced by $\frac{|Q|}{\log(e+|x_Q|)+|\log(|Q|)|}$, with x_Q the center of Q. Equivalent characterizations as for Hardy spaces (Dachun Yang et al.)

Why the logarithm?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Use of the norm $\|b\|_{\text{BMO}^+} = \|b\|_{\text{BMO}} + \int_{(0,1)^d} |b| dx$ (we are not dealing with equivalent classes modulo constants!).

Why the logarithm?

Use of the norm $\|b\|_{\text{BMO}^+} = \|b\|_{\text{BMO}} + \int_{(0,1)^d} |b| dx$ (we are not dealing with equivalent classes modulo constants!).

Use of John-Nirenberg Inequality:

$$\int_{\mathbb{R}^d} \frac{e^{|b(x)|}}{(|x|+1)^{d+1}} dx \leq \beta$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

for $\|b\|_{BMO^+} \leq \alpha$.

Why the logarithm?

Use of the norm $\|b\|_{\text{BMO}^+} = \|b\|_{\text{BMO}} + \int_{(0,1)^d} |b| dx$ (we are not dealing with equivalent classes modulo constants!).

Use of John-Nirenberg Inequality:

$$\int_{\mathbb{R}^d} \frac{e^{|b(x)|}}{(|x|+1)^{d+1}} dx \leq \beta$$

for $\|b\|_{\text{BMO}^+} \leq \alpha$. Hölder type Inequality for this kind of exponential integrability condition and L^1 condition

Paraproducts, or Dobyinsky-Meyer renormalization

S and T may be given in a wavelet decomposition. For P_j associated to a MRA and $Q_j = P_{j+1} - P_j$, then

$$hb = \sum_{j \in \mathbb{Z}} (Q_j h)(Q_j b) + \sum_{j \in \mathbb{Z}} (P_j h)(Q_j b) + \sum_{j \in \mathbb{Z}} (Q_j h)(P_j b).$$

The first term is put in S, the last one in T. The middle term is in \mathcal{H}^1 .

・ロト ・ 日 ・ モ ト ・ 日 ・ うへつ

Paraproducts, or Dobyinsky-Meyer renormalization

S and T may be given in a wavelet decomposition. For P_j associated to a MRA and $Q_j = P_{j+1} - P_j$, then

$$hb = \sum_{j \in \mathbb{Z}} (Q_j h)(Q_j b) + \sum_{j \in \mathbb{Z}} (P_j h)(Q_j b) + \sum_{j \in \mathbb{Z}} (Q_j h)(P_j b).$$

The first term is put in S, the last one in T. The middle term is in \mathcal{H}^1 .

The last paraproduct maps \mathcal{H}^1 into \mathcal{H}^{log} .

An equivalence for commutators

Theorem [Ky]. Let $b \in BMO$ and $h \in H^1$. Then it is equivalent that

- All commutators [b, K]h, for K a Calderón-Zygmund operator, are in L¹.
- ► Commutators [b, R_j]h, for R_j Riesz transforms, j = 1, · · · d are in L¹.

• The commutator [b,]h is in L¹.

Sufficient to look at terms T appearing in products.

An equivalence for commutators

Theorem [Ky]. Let $b \in BMO$ and $h \in H^1$. Then it is equivalent that

- All commutators [b, K]h, for K a Calderón-Zygmund operator, are in L¹.
- ► Commutators [b, R_j]h, for R_j Riesz transforms, j = 1, · · · d are in L¹.

▶ The commutator [b,]h is in L¹.

Sufficient to look at terms T appearing in products.

Pérez has defined via its atomic decomposition a subspace \mathcal{H}_b such that $h \in \mathcal{H}_b$ satisfies these conditions.

Holomorphic Generalized Hardy spaces

We restrict now to Dimension 1 and define \mathcal{H}^{Φ}_{hol} as the space of functions f that are holomorphic in the upper half-plane and such that

$$\sup_{y>0} \|f(\cdot+iy)\|_{L^{\Phi}} < \infty.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

Holomorphic Generalized Hardy spaces

We restrict now to Dimension 1 and define \mathcal{H}^{Φ}_{hol} as the space of functions f that are holomorphic in the upper half-plane and such that

$$\sup_{y>0} \|f(\cdot+iy)\|_{L^{\Phi}} < \infty.$$

Again, classical equivalence of definitions generalize. Recall that the dual of \mathcal{H}^1_{hol} is the space $B\!M\!O\!A.$

Factorization Theorem [B., Ky]. The pointwise product maps $BMOA \times \mathcal{H}^1_{hol}$ onto \mathcal{H}^{log}_{hol} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

Holomorphic Generalized Hardy spaces

We restrict now to Dimension 1 and define \mathcal{H}^{Φ}_{hol} as the space of functions f that are holomorphic in the upper half-plane and such that

$$\sup_{y>0} \|f(\cdot+iy)\|_{L^{\Phi}} < \infty.$$

Again, classical equivalence of definitions generalize. Recall that the dual of \mathcal{H}^1_{hol} is the space $B\!M\!O\!A.$

Factorization Theorem [B., Ky]. The pointwise product maps $\operatorname{BMOA} \times \mathcal{H}^1_{\operatorname{hol}}$ onto $\mathcal{H}^{\log}_{\operatorname{hol}}$. Due to [B., Iwaniec, Jones, Zinsmeister] for the disc instead of the upper half-plane.

Hankel operators

The Hankel operator \mathfrak{h}_b of symbol b is defined by

$$\langle \mathfrak{h}_b(f),g\rangle = \langle b,fg\rangle.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

Corollary. \mathfrak{h}_b maps \mathcal{H}^1 into itself if and only if $b \in BMO^{\log}$.

Hankel operators

The Hankel operator \mathfrak{h}_b of symbol b is defined by

$$\langle \mathfrak{h}_b(f),g\rangle = \langle b,fg\rangle.$$

Corollary. \mathfrak{h}_b maps \mathcal{H}^1 into itself if and only if $b \in BMO^{\log}$.

Well known for the unit disc [Janson, Tolokonnikov], with generalizations to the unit ball [B., Grellier, Sehba] and to the polydisc [Pott, Sehba, \cdots].