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Part I :

AAK-theory is very useful
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Outline of an AAK-based algorithm
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Outline of an AAK-based algorithm

1 You wish to approximate a function F on R+ by a linear
combination of few exponential functions.

2 Consider the Hankel operator on L2(R+) with symbol F ;

ΓF (G )(x) =

∫ ∞
0

F (x + y)G (y)dy .

3 Compute singular values and vectors of ΓF , call them (σj)
∞
j=0

and (uj)
∞
j=0.

(That is σ2
j uj = Γ∗FΓFuj and we set σ0 ≥ σ1...)
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Outline of an AAK-based algorithm

(F −→ ΓF −→ Sing. value’s σj & sing. vector’s uj .)

4 Pick a σk close to your desired error ε, with k as small as

possible.

5 ǔk(z) is a H2(C+) function, which according to AAK has
precisely k zeroes. Compute these and call them z1, . . . , zk .
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Outline of an AAK-based algorithm

(F −→ ΓF −→ σk ≈ ε −→ uk −→ ǔk −→ (zm)km=1.)

6 Adamyan-Arov-Krein: There are coefficients c1, . . . , cn ∈ C
such that

F (x) ≈
k∑

m=1

cme
izmx

with error ≈ ε.
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Outline of an AAK-based algorithm

Pros:

I Completely non-linear approximation algorithm

I Complex frequencies

I Accuracy is chosen first

Cons:

I Set up not flexible, does not work with weights...

Or is there an AAK-type theory in weighted spaces?
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Part II :

AAK-theory in weighted spaces
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Hankel operators in weighted spaces.

Let w = (wj)
∞
j=0 be a weight. Set

`2
w = {(aj)∞j=0 :

∞∑
j=0

|aj |2wj <∞}.

Definition in this talk: A Hankel operator on `2
w is an operator Γf

whose matrix representation in the canonical basis looks like

Γf =


f0 f1 f2 · · ·
f1 f2 · · · · · ·
f2 · · · · · · · · ·
· · · · · · · · · · · ·


Equivalent definition: An operator Γ is Hankel if and only if
BΓ = ΓS , where S is the forward shift operator and B is the
backward shift operator.
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AAK-theory in the unweighted case.

Theorem 1 (AAK) Given a Hankel operator Γf on `2(= `2
1) and a

singular value σk , there exists a Hankel operator Γg of rank k such
that

‖Γf − Γg‖ = σk .

Moreover, g is then a sum of k geometric sequences which can be
explicitly found by computing the k zeroes of ǔk(z) ∈ H2(D).

(uk ∈ `2 is the k’th singular vector and ǔk(z) =
∑∞

j=0 uk,jz
j)

Theorem 2 (“Equivalent” reformulation of AAK) There exists a
shift-invariant subspace M⊂ `2 of codimension k , such that

‖Γf |M‖ = σk .

Moreover,
M̌ = {the z-invariant subspace with the same zeroes as ǔk}.
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AAK-theory in the weighted case

Here is what happens if we consider Γf on `2
w where w is not

constant:
Theorem 1 seems to be false always.
Theorem 2 (first part) is true whenever w is increasing.
(due to (S. Treil and A. Volberg 1994))
Theorem 2 (second part) is true whenever w is strictly increasing
and “point evaluations on the boundary T are not bounded”, i.e.
whenever

∑∞
j=0

1
wj

=∞. (Carlsson 2009)

Conjecture: The second assumption is not necessary.
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Applications?

None.
Reason: Theorem 1 fails.
Related result: Commutant lifting:
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Applications?

None.
Reason: Theorem 1 fails.
Related result: Commutant lifting:
Suppose ‖Γf ‖ = 1.

Γf =


f0 f1 f2 . . .
f1 f2 · . . .
f2 · · . . .
...

...
...

. . .
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Applications?

None.
Reason: Theorem 1 fails.
Related result: Commutant lifting:
∃f = (fk)∞k=−∞ such that ‖ExtΓf

‖ = 1 where
ExtΓf

: `2
w (N)→ `2

w (Z) is ”Hankel”, i.e. looks like

ExtΓf
=



...
...

...
. . .

f−2 f−1 f0 . . .
f−1 f0 f1 . . .
f0 f1 f2 . . .
f1 f2 · . . .
f2 · · . . .
...

...
...
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Applications?

None.
Reason: Theorem 1 fails.
Related result: Commutant lifting:
However, 6 ∃f = (fk)∞k=−∞ such that ‖ExtΓf

‖ = 1 where
ExtΓf

: `2
w (Z)→ `2

w (Z) is ”Hankel”, i.e. looks like

ExtΓf
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. . .
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. . .
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. . . f1 f2 · · . . .
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Spelled out, the main theorem reads:

Theorem Let the weight w be strictly increasing and satisfy

∞∑
j=0

1

wj
=∞.

Let Γ be a Hankel operator on `2
w . Let σk/uk be the kth singular

value/vector. Then ǔk(z) =
∑∞

j=0 uk,jz
j has precisely k zeroes in

D. Moreover if the zeroes {zj}kj=1 of ǔk are disjoint and

M̌ = {h ∈ ˇ̀2
w : h(zj) = 0 for j = 1 . . . , k},

then
‖Γ|M‖ = σk .
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