Rota's Universal Operators and Invariant Subspaces in Hilbert Spaces

Carl C. Cowen

IUPUI

and

Eva Gallardo Gutiérrez

Universidad Complutense de Madrid e IUMA

Hilbert Function Spaces, Gargnano, 21 May 2013

Rota's Universal Operators and Invariant Subspaces in Hilbert Spaces

Carl C. Cowen

and

Eva Gallardo Gutiérrez

Thanks to: Plan Nacional I+D grant no. MTM2010-16679.
Speaker thanks the Departamento Análisis Matemático,
Univ. Complutense de Madrid for hospitality during
summer 2011 and fall 2012, and also thanks IUPUI for a
sabbatical during 2012-13 that made this work possible.

Thank you for coming!

History:

We announced on 25 January that the work I'm about to talk about proved the Invariant Subspace Theorem. Thank you for coming!

History:

We announced on 25 January that the work I'm about to talk about proved the Invariant Subspace Theorem.

On 26 January, we learned that it did **not** prove the Theorem.

Thank you for coming!

History:

We announced on 25 January that the work I'm about to talk about proved the Invariant Subspace Theorem.

On 26 January, we learned that it did **not** prove the Theorem.

Today, I want to present what is new and interesting \cdots and true!

The Hardy Hilbert space on the unit disk, $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ is:

$$H^{2} = \{h \text{ analytic in } \mathbb{D} : h(z) = \sum_{n=0}^{\infty} a_{n} z^{n} \text{ with } \|h\|^{2} = \sum |a_{n}|^{2} < \infty \}$$

where for h and g in H^2 , we have $\langle h, g \rangle = \sum a_n b_n$

Writing h as a Fourier series: $h \sim \sum_{n=0}^{\infty} a_n e^{in\theta}$

 $H^2(\mathbb{D})$ is closed subspace of $L^2(\partial \mathbb{D})$ consisting of h with $a_n = 0$ for n < 0.

Second definition:

$$H^2(\mathbb{D}) = \{h \text{ analytic in } \mathbb{D} : \sup_{0 < r < 1} \int_0^{2\pi} |h(re^{i\theta})|^2 \frac{d\theta}{2\pi} < \infty \}$$

Write K_{α} for function in H^2 that gives $\langle h, K_{\alpha} \rangle = h(\alpha)$:

$$K_{\alpha}(z) = (1 - \overline{\alpha}z)^{-1}$$
 for α in \mathbb{D} .

Consider four types of operators on H^2 :

For f in $L^{\infty}(\partial \mathbb{D})$, Toeplitz operator T_f is operator given by $T_f h = P_+ f h$ where P_+ is the orthogonal projection from $L^2(\partial \mathbb{D})$ onto H^2

For ψ a bounded analytic map of $\mathbb D$ into the complex plane,

the analytic Toeplitz operator T_{ψ} is

$$(T_{\psi}h)(z) = \psi(z)h(z)$$
 for h in H^2

Note: for ψ in H^{∞} , $P_+\psi h = \psi h$

For φ an analytic map of \mathbb{D} into itself, the *composition operator* C_{φ} is

$$(C_{\varphi}h)(z) = h(\varphi(z))$$
 for h in H^2

and for ψ in H^{∞} and φ an analytic map of $\mathbb D$ into itself,

the weighted composition operator $W_{\psi,\varphi} = T_{\psi}C_{\varphi}$ is $(W_{\psi,\varphi}h)(z) = \psi(z)h(\varphi(z))$ for h in H^2 Some terminology:

If A is bounded operator on Banach space X, a closed subspace M, of X is a non-trivial invariant subspace for A
if for all v in M, the vector Av is also in M and (0) ≠ M ≠ X.
If M is a non-trivial invariant subspace for A, then M is a hyperinvariant subspace for A
if M is invariant subspace for A

The Invariant Subspace Questions are:

 Does every bounded operator on a Banach space have a non-trivial invariant subspace? ... hyperinvariant subspace? Some history:

- Restrict attention to $A \neq \lambda I$ and $2 \leq \dim(\mathcal{X})$, with \mathcal{X} separable
- von Neumann ('30's), Aronszajn & Smith ('54) compacts
- Lomonosov ('73):

A bounded linear operator T, not a multiple of the identity, that commutes with a nonzero compact operator, has a non-trivial hyperinvariant closed subspace.

This implies that An operator that commutes with

a non-scalar operator that commutes with a non-zero compact has a non-trivial invariant subspace.

- Lomonosov did *not* solve ISP: Hadwin, Nordgren, Radjavi, Rosenthal('80)
- Enflo ('75/'87), Read ('85)
- Scott Brown ('78)

Rota's Universal Operators:

- **Defn:** Let \mathcal{X} be a Banach space, let U be a bounded operator on \mathcal{X} , and let $\mathcal{B}(\mathcal{X})$ be the algebra of bounded operators on \mathcal{X} .
- We say U is universal for \mathcal{X} if for each non-zero bounded operator A on \mathcal{X} , there is an invariant subspace M for U and a non-zero number λ such that λA is similar to $U|_{M}$.

Rota's Universal Operators:

Defn: Let X be a Banach space, let U be a bounded operator on X, and let B(X) be the algebra of bounded operators on X.
We say U is universal for X if for each non-zero bounded operator A on X, there is an invariant subspace M for U and a non-zero number λ such that λA is similar to U|_M.

Rota proved in 1960 that if \mathcal{X} is a separable, infinite dimensional Hilbert space, there are universal operators on \mathcal{X} !

Theorem (Caradus (1969))

If \mathcal{H} is separable Hilbert space and U is bounded operator on \mathcal{H} such that:

1. The null space of U is infinite dimensional.

2. The range of U is \mathcal{H} .

then U is universal for \mathcal{H} .

Theorem (Caradus (1969))

If \mathcal{H} is separable Hilbert space and U is bounded operator on \mathcal{H} such that:

1. The null space of U is infinite dimensional.

2. The range of U is \mathcal{H} .

then U is universal for \mathcal{H} .

We give a universal operator commuting with a compact operator.

Best Known: adjoint of a unilateral shift of infinite multiplicity:

Suppose S is analytic Toeplitz operator whose symbol is singular inner function or infinite Blaschke product, then S^* is a universal operator. Such an operator can be represented as a block matrix on $\mathcal{H} = \bigoplus_{k=0}^{\infty} \mathcal{W}$, where \mathcal{W} is the "wandering subspace" associated with S.

The block matrix representing S^* is upper triangular and has the identity on \mathcal{W} on the super-diagonal:

$$S^* \sim \left(\begin{array}{cccccc} 0 & I & 0 & 0 & \cdots \\ 0 & 0 & I & 0 & \cdots \\ 0 & 0 & 0 & I & \cdots \\ & & \ddots & \end{array} \right)$$

Easy computation shows that every operator commuting with S^* has form

$$A \sim \begin{pmatrix} A_0 & A_{-1} & A_{-2} & A_{-3} & \cdots \\ 0 & A_0 & A_{-1} & A_{-2} & \cdots \\ 0 & 0 & A_0 & A_{-1} & \cdots \\ & & \ddots & \end{pmatrix}$$

that is, upper triangular block Toeplitz matrix, that is, an upper triangular block matrix whose entries on each diagonal are the same operator on the infinite dimensional Hilbert space \mathcal{W} .

Because every block in such a matrix occurs infinitely often, we easily see that only compact operator that commutes with universal operator S^* is 0.

Also well known (Nordgren, Rosenthal, Wintrobe ('84,'87)):

If φ is an automorphism of \mathbb{D} with fixed points ± 1 and Denjoy-Wolff point 1,

that is,
$$\varphi(z) = \frac{z+s}{1+sz}$$
 for $0 < s < 1$,

then a translate of the composition operator C_{φ} is a universal operator.

Also well known (Nordgren, Rosenthal, Wintrobe ('84,'87)):

If φ is an automorphism of \mathbb{D} with fixed points ± 1 and Denjoy-Wolff point 1, that is, $\varphi(z) = \frac{z+s}{1+sz}$ for 0 < s < 1,

then a translate of the composition operator C_{φ} is a universal operator.

In 2011, C. and Gallardo Gutiérrez showed that C_{φ} is unitarily equivalent to the adjoint of the analytic Toeplitz operator T_{ψ} where ψ is the covering map of the disk onto the interior of the annulus $\sigma(C_{\varphi})$.

Also well known (Nordgren, Rosenthal, Wintrobe ('84,'87)):

If φ is an automorphism of \mathbb{D} with fixed points ± 1 and Denjoy-Wolff point 1, that is, $\varphi(z) = \frac{z+s}{1+sz}$ for 0 < s < 1,

then a translate of the composition operator C_{φ} is a universal operator.

In 2011, C. and Gallardo Gutiérrez showed that C_{φ} is unitarily equivalent to the adjoint of the analytic Toeplitz operator T_{ψ} where ψ is the covering map of the disk onto the interior of the annulus $\sigma(C_{\varphi})$.

In C.'s thesis ('76): The analytic Toeplitz operators S and T_{ψ} DO NOT commute with non-trivial compact operators.

Also proved: *IF* an analytic Toeplitz operator commutes with a non-trivial compact, then the compact operator is quasi-nilpotent.

Our Goal Today:

There is an analytic Toeplitz operator that commutes with a non-trivial compact operator and the adjoint of the Toeplitz operator is a universal operator in the sense of Rota.

Lemma.

For φ and ψ in H^{∞} and J an analytic map of the unit disk into itself, the analytic Toeplitz operator T_{φ} commutes with the composition operator C_J or

 T_{φ} commutes with the weighted composition operator $W_{\psi,J}$ if and only if

 $\varphi \circ J = \varphi.$

Proof:

We will skip the easy proof.

Let $\Omega = \{z \in \mathbb{C} : \text{Im } z^2 > -1 \text{ and } \text{Re } z < 0\}$, region in second quadrant above branch of the hyperbola 2xy = -1.

Let σ be the Riemann map of $\mathbb D$ onto Ω defined by

$$\sigma(z) = \frac{-1+i}{\sqrt{z+1}}$$

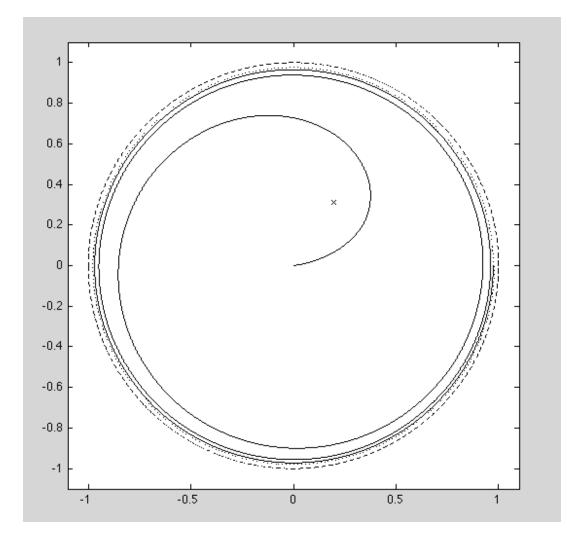
branch of $\sqrt{\cdot}$ on the halfplane $\{z : \operatorname{Re} z > 0\}$ satisfies $\sqrt{1} = 1$. Notice that $\sigma(1) = (-1+i)/\sqrt{2}$, $\sigma(0) = -1+i$, and $\sigma(-1) = \infty$. We define φ on the unit disk by

$$\varphi(z) = e^{\sigma(z)} - e^{\sigma(0)} = e^{\sigma(z)} - e^{-1+i}$$

Helpful to point out some of the properties of σ , e^{σ} , and φ . Use the set $\Gamma = \{e^{i\theta} : -\pi < \theta < \pi\}$, the unit circle except -1, in this description. [1] $\Omega = \sigma(\mathbb{D})$ is the region in the second quadrant of the complex plane above the branch of the hyperbola 2xy = -1 and this branch is $\sigma(\Gamma)$. Moreover, $\sigma(0)$ is not on the curve $\sigma(\Gamma)$.

- [1] $\Omega = \sigma(\mathbb{D})$ is the region above the branch of the hyperbola 2xy = -1.
- [2] The function e^{σ} maps curve Γ onto curve spiraling out from origin to $\partial \mathbb{D}$. Circle of radius r intersects curve $e^{\sigma(\Gamma)}$ in exactly one point.

Closure $e^{\sigma(\Gamma)}$ is the set $\{0\} \cup e^{\sigma(\Gamma)} \cup \partial \mathbb{D}$ and distance $e^{\sigma(0)}$ to $e^{\sigma(\Gamma)} > 0$.



[1] $\Omega = \sigma(\mathbb{D})$ is the region above the branch of the hyperbola 2xy = -1.

[2] The function e^{σ} maps curve Γ onto curve spiraling out from origin to $\partial \mathbb{D}$. Circle of radius r intersects curve $e^{\sigma(\Gamma)}$ in exactly one point.

Closure $e^{\sigma(\Gamma)}$ is the set $\{0\} \cup e^{\sigma(\Gamma)} \cup \partial \mathbb{D}$ and distance $e^{\sigma(0)}$ to $e^{\sigma(\Gamma)} > 0$.

[3] The function e^{σ} is infinite-to-one map of unit disk, \mathbb{D} , onto $\mathbb{D} \setminus \{0\}$.

[1] $\Omega = \sigma(\mathbb{D})$ is the region above the branch of the hyperbola 2xy = -1.

[2] The function e^{σ} maps curve Γ onto curve spiraling out from origin to $\partial \mathbb{D}$. Circle of radius r intersects curve $e^{\sigma(\Gamma)}$ in exactly one point.

Closure $e^{\sigma(\Gamma)}$ is the set $\{0\} \cup e^{\sigma(\Gamma)} \cup \partial \mathbb{D}$ and distance $e^{\sigma(0)}$ to $e^{\sigma(\Gamma)} > 0$.

[3] The function e^{σ} is infinite-to-one map of unit disk, \mathbb{D} , onto $\mathbb{D} \setminus \{0\}$.

[4] The function $\varphi = e^{\sigma} - e^{-1+i}$ is bounded below on Γ , and therefore is an invertible function in $L^{\infty}(\partial \mathbb{D})$.

[1] $\Omega = \sigma(\mathbb{D})$ is the region above the branch of the hyperbola 2xy = -1.

[2] The function e^{σ} maps curve Γ onto curve spiraling out from origin to $\partial \mathbb{D}$. Circle of radius r intersects curve $e^{\sigma(\Gamma)}$ in exactly one point.

Closure $e^{\sigma(\Gamma)}$ is the set $\{0\} \cup \sigma(\Gamma) \cup \partial \mathbb{D}$ and distance $e^{\sigma(0)}$ to $e^{\sigma(\Gamma)} > 0$.

[3] The function e^{σ} is infinite-to-one map of unit disk, \mathbb{D} , onto $\mathbb{D} \setminus \{0\}$.

[4] The function $\varphi = e^{\sigma} - e^{-1+i}$ is bounded below on Γ , and therefore is an invertible function in $L^{\infty}(\partial \mathbb{D})$.

Lemma.

If f is a function in $H^{\infty}(\mathbb{D})$ and there is $\ell > 0$ so that $|f(e^{i\theta})| \ge \ell$ almost everywhere on the unit circle, then 1/f is in $L^{\infty}(\partial \mathbb{D})$ and the (non-analytic) Toeplitz operator $T_{1/f}$ is a left inverse for the analytic Toeplitz operator T_f .

Lemma.

If f is a function in $H^{\infty}(\mathbb{D})$ and there is $\ell > 0$ so that $|f(e^{i\theta})| \ge \ell$ almost everywhere on the unit circle, then 1/f is in $L^{\infty}(\partial \mathbb{D})$ and the (non-analytic) Toeplitz operator $T_{1/f}$ is a left inverse for the analytic Toeplitz operator T_f .

Corollary.

The analytic Toeplitz operator T_{φ} has a left inverse.

Corollary.

Toeplitz operator T^*_{φ} has right inverse and T^*_{φ} maps $H^2(\mathbb{D})$ onto itself.

The following is our first main Theorem:

Theorem.

The Toeplitz operator T_{φ}^* is universal for $H^2(\mathbb{D})$.

Proof:

We use the Theorem of Caradus to establish the result.

The last Corollary shows that the range of T^*_{φ} is all of $H^2(\mathbb{D})$.

For n a non-negative integer, let $z_n = \sigma^{-1}(-1 + i + 2n\pi i)$.

For each n, the vector K_{z_n} is in the nullspace of T_{φ}^* ,

so the nullspace of T_{φ}^* is infinite dimensional.

Therefore, by Caradus' Theorem, T_{φ}^* is a universal operator for $H^2(\mathbb{D})$.

Let J be the analytic map of the unit disk into itself given by

$$J(z) = \sigma^{-1}(\sigma(z) + 2\pi i)$$

From this definition, an easy calculation shows that $\varphi \circ J = \varphi$.

Let J be the analytic map of the unit disk into itself given by

$$J(z) = \sigma^{-1}(\sigma(z) + 2\pi i)$$

We will show the image $J(\mathbb{D})$ is a convex set in \mathbb{D} .

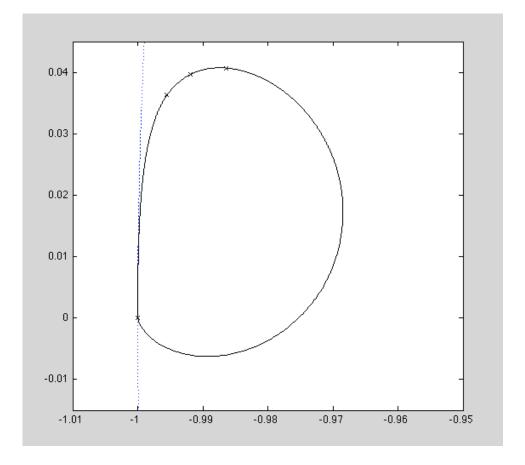


Figure 1: The set $J(\partial \mathbb{D})$ with J(-1) = -1, J(-i), J(1), and J(i).

Recall that σ is defined by

$$\zeta = \sigma(z) = \frac{-1+i}{\sqrt{z+1}}$$

which means σ^{-1} is given by

$$\sigma^{-1}(\zeta) = \frac{-2i}{\zeta^2} - 1$$

Recall that σ is defined by

$$\zeta = \sigma(z) = \frac{-1+i}{\sqrt{z+1}}$$

which means σ^{-1} is given by

$$\sigma^{-1}(\zeta) = \frac{-2i}{\zeta^2} - 1$$

Let H be branch of the hyperbola $2x(y-2\pi) = -1$ in 2^{nd} quadrant.

Since J is given by $J(z) = \sigma^{-1}(\sigma(z) + 2\pi i)$

showing that $J(\mathbb{D})$ is convex

means showing that σ^{-1} (region above hyperbola H) is convex.

There is a standard criterion for deciding whether the image of the unit disk under a univalent map is convex \cdots this works, but it's tedious.

Instead, we'll use the fact that the non-empty intersection of convex sets is convex and exhibit $J(\mathbb{D})$ as such an intersection.

Lemma.

For each point, p, on the hyperbola H, there is a unique circle, Z_p , passing through 0 and tangent to the hyperbola at p.

Lemma.

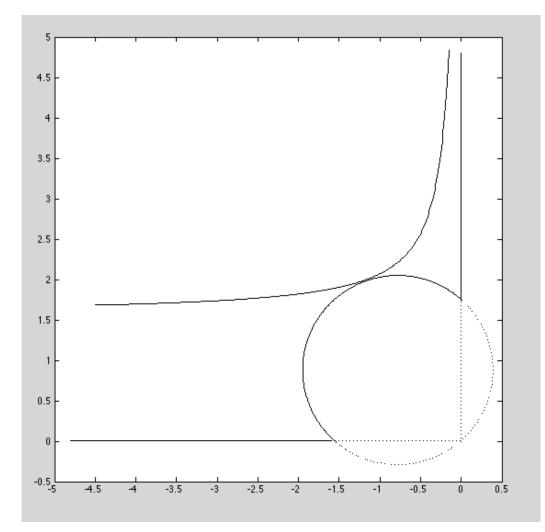
For each point, p, on the hyperbola H, there is a unique circle, Z_p , passing through 0 and tangent to the hyperbola at p.

Definition:

For each point p on the hyperbola H, let Δ_p denote the *triangular region* consisting of the (open) second quadrant in \mathbb{C} intersected with the (open) exterior of the circle Z_p .

Definition:

For each point p on the hyperbola H, let Δ_p denote the *triangular region* consisting of the (open) second quadrant in \mathbb{C} intersected with the (open) exterior of the circle Z_p .



Lemma.

For each point, p, on the hyperbola H, there is a unique circle, Z_p , passing through 0 and tangent to the hyperbola at p.

Definition:

For each point p on the hyperbola H, let Δ_p denote the *triangular region* consisting of the (open) second quadrant in \mathbb{C} intersected with the (open) exterior of the circle Z_p .

Lemma.

 $\bigcap_{p \in H} \Delta_p \quad \text{is the region above the hyperbola } H.$

For each p in H, the set $\{\zeta^{-1} : \zeta \in \Delta_p\}$ is the interior of a *Euclidean* triangle(!!) (or a half strip if 0 is a vertex of Δ_p) two of whose sides lie on the negative real and negative imaginary axes. For each p in H, the set $\{\zeta^{-1} : \zeta \in \Delta_p\}$ is the interior of a *Euclidean* triangle(!!) (or a half strip if 0 is a vertex of Δ_p) two of whose sides lie on the negative real and negative imaginary axes.

For each p in H, the set $\{\zeta^{-2} : \zeta \in \Delta_p\}$ is the interior of a *parabolic* section(!!) in the upper half plane whose straight boundary is on the real axis. That is, for each p in H, the set $\{\zeta^{-2} : \zeta \in \Delta_p\}$ is a convex set. For each p in H, the set $\{\zeta^{-1} : \zeta \in \Delta_p\}$ is the interior of a *Euclidean* triangle(!!) (or a half strip if 0 is a vertex of Δ_p) two of whose sides lie on the negative real and negative imaginary axes.

For each p in H, the set $\{\zeta^{-2} : \zeta \in \Delta_p\}$ is the interior of a *parabolic* section(!!) in the upper half plane whose straight boundary is on the real axis. That is, for each p in H, the set $\{\zeta^{-2} : \zeta \in \Delta_p\}$ is a convex set.

Since $\sigma^{-1}(\Delta_p)$ is a convex set for each p in H and

$$\bigcap_{p \in H} \sigma^{-1}(\Delta_p) = \sigma^{-1} \left(\bigcap_{p \in H} \Delta_p \right) = J(\mathbb{D})$$

we see that $J(\mathbb{D})$ is convex.

The function $\psi(z) = (z+1)/2$ is an outer function, so T_{ψ} has dense range.

Conclude $W_{\psi,J} = T_{\psi}C_J$ has dense range, so $W_{\psi,J}^*$ is injective.

The function $\psi(z) = (z+1)/2$ is an outer function, so T_{ψ} has dense range.

Conclude $W_{\psi,J} = T_{\psi}C_J$ has dense range, so $W_{\psi,J}^*$ is injective.

Because ψ is continuous, $\psi(-1) = 0$, and -1 is Denjoy-Wolff point of J, work of Gunatillake (2007) or C. (1980) implies $W_{\psi,J}$ is compact.

The function $\psi(z) = (z+1)/2$ is an outer function, so T_{ψ} has dense range.

Conclude $W_{\psi,J} = T_{\psi}C_J$ has dense range, so $W_{\psi,J}^*$ is injective.

Because ψ is continuous, $\psi(-1) = 0$, and -1 is Denjoy-Wolff point of J, work of Gunatillake (2007) or C. (1980) implies $W_{\psi,J}$ is compact.

Main Theorem.

The operator $W_{\psi,J}^*$ is an injective, compact operator that commutes with the universal operator T_{φ}^* .

PLAN:

Use this result to show that every operator on a separable Hilbert space has a non-trivial invariant subspace by:

Because T_{φ}^* is universal, if A_0 is a given operator on a separable Hilbert space \mathcal{H} , then there is an invariant subspace M for T_{φ}^* such that A_0 is similar to $T_{\varphi}^*|_M$, which we will call A.

Obviously, if $W_{\psi,J}^*$ ALSO has M as an invariant subspace,

then $W_{\psi,J}^*|_M$ is a non-zero compact that commutes with A.

But, we know that this cannot *always* be true!

One result that we were hopeful about was

Corollary.

If A is any bounded linear operator on a separable infinite dimensional Hilbert space, \mathcal{H} , there is a complex number μ and non-zero compact operators, K_1 and K_2 , on \mathcal{H} such that $K_1(A + \mu I) = (A + \mu I)K_2$. One result that we were hopeful about was

Corollary.

If A is any bounded linear operator on a separable infinite dimensional Hilbert space, \mathcal{H} , there is a complex number μ and non-zero compact operators, K_1 and K_2 , on \mathcal{H} such that $K_1(A + \mu I) = (A + \mu I)K_2$.

But, there are trivial examples of this: If A is any invertible operator and K is any compact operator on the same space, then $K_1A = A(A^{-1}K_1A)$ which can be written as $K_1A = AK_2$ where $K_2 = (A^{-1}K_1A)$

THANK YOU!