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Thank you for coming!

History:

We announced on 25 January that the work I’m about to talk about

proved the Invariant Subspace Theorem.

On 26 January, we learned that it did not prove the Theorem.

Today, I want to present what is new and interesting · · · and true!



The Hardy Hilbert space on the unit disk, D = {z ∈ C : |z| < 1} is:

H2 = {h analytic in D : h(z) =

∞∑
n=0

anz
n with ‖h‖2 =

∑
|an|2 <∞}

where for h and g in H2, we have 〈h, g〉 =
∑
anbn

Writing h as a Fourier series: h ∼
∑∞

n=0 ane
inθ

H2(D) is closed subspace of L2(∂D) consisting of h with an = 0 for n < 0.

Second definition:

H2(D) = {h analytic in D : sup
0<r<1

∫ 2π

0

|h(reiθ)|2 dθ
2π

<∞}

Write Kα for function in H2 that gives 〈h,Kα〉 = h(α):

Kα(z) = (1− αz)−1 for α in D.



Consider four types of operators on H2:

For f in L∞(∂D), Toeplitz operator Tf is operator given by Tfh = P+fh

where P+ is the orthogonal projection from L2(∂D) onto H2

For ψ a bounded analytic map of D into the complex plane,

the analytic Toeplitz operator Tψ is

(Tψh)(z) = ψ(z)h(z) for h in H2

Note: for ψ in H∞, P+ψh = ψh

For ϕ an analytic map of D into itself, the composition operator Cϕ is

(Cϕh) (z) = h(ϕ(z)) for h in H2

and for ψ in H∞ and ϕ an analytic map of D into itself,

the weighted composition operator Wψ,ϕ = TψCϕ is

(Wψ,ϕh) (z) = ψ(z)h(ϕ(z)) for h in H2



Some terminology:

If A is bounded operator on Banach space X , a closed subspace M , of X is

a non-trivial invariant subspace for A

if for all v in M , the vector Av is also in M and (0) 6= M 6= X .

If M is a non-trivial invariant subspace for A, then M is

a hyperinvariant subspace for A

if M is invariant subspace for all operators, B, satisfying AB = BA.

The Invariant Subspace Questions are:

• Does every bounded operator on a Banach space have a non-trivial

invariant subspace? · · · hyperinvariant subspace?



Some history:

• Restrict attention to A 6= λI and 2 ≤ dim(X ), with X separable

• von Neumann (’30’s), Aronszajn & Smith (’54) compacts

• Lomonosov (’73):

A bounded linear operator T , not a multiple of the identity,

that commutes with a nonzero compact operator,

has a non-trivial hyperinvariant closed subspace.

This implies that An operator that commutes with

a non-scalar operator that commutes with a non-zero compact

has a non-trivial invariant subspace.

• Lomonosov did not solve ISP: Hadwin, Nordgren, Radjavi, Rosenthal(’80)

• Enflo (’75/’87), Read (’85)

• Scott Brown (’78)



Rota’s Universal Operators:

Defn: Let X be a Banach space, let U be a bounded operator on X , and

let B(X ) be the algebra of bounded operators on X .

We say U is universal for X if for each non-zero bounded operator A on X ,

there is an invariant subspace M for U and a non-zero number λ

such that λA is similar to U |M .



Rota’s Universal Operators:

Defn: Let X be a Banach space, let U be a bounded operator on X , and

let B(X ) be the algebra of bounded operators on X .

We say U is universal for X if for each non-zero bounded operator A on X ,

there is an invariant subspace M for U and a non-zero number λ

such that λA is similar to U |M .

Rota proved in 1960 that if X is a separable, infinite dimensional Hilbert

space, there are universal operators on X !
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1. The null space of U is infinite dimensional.
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Theorem (Caradus (1969))

If H is separable Hilbert space and U is bounded operator on H such that:

1. The null space of U is infinite dimensional.

2. The range of U is H.

then U is universal for H.

We give a universal operator commuting with a compact operator.



Some previously known Universal Operators (in sense of Rota):

Best Known: adjoint of a unilateral shift of infinite multiplicity:

Suppose S is analytic Toeplitz operator whose symbol is singular inner

function or infinite Blaschke product, then S∗ is a universal operator.

Such an operator can be represented as a block matrix on H = ⊕∞k=0W ,

where W is the “wandering subspace” associated with S.

The block matrix representing S∗ is upper triangular and has the identity

on W on the super-diagonal:

S∗ ∼


0 I 0 0 · · ·

0 0 I 0 · · ·

0 0 0 I · · ·
. . .





Easy computation shows that every operator commuting with S∗ has form

A ∼


A0 A−1 A−2 A−3 · · ·

0 A0 A−1 A−2 · · ·

0 0 A0 A−1 · · ·
. . .


that is, upper triangular block Toeplitz matrix, that is, an upper triangular

block matrix whose entries on each diagonal are the same operator on the

infinite dimensional Hilbert space W .

Because every block in such a matrix occurs infinitely often, we easily see

that only compact operator that commutes with universal operator S∗ is 0.



Some previously known Universal Operators (in sense of Rota):

Also well known (Nordgren, Rosenthal, Wintrobe (’84,’87)):

If ϕ is an automorphism of D with fixed points ±1 and Denjoy-Wolff point 1,

that is, ϕ(z) =
z + s

1 + sz
for 0 < s < 1,

then a translate of the composition operator Cϕ is a universal operator.
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Some previously known Universal Operators (in sense of Rota):

Also well known (Nordgren, Rosenthal, Wintrobe (’84,’87)):

If ϕ is an automorphism of D with fixed points ±1 and Denjoy-Wolff point 1,

that is, ϕ(z) =
z + s

1 + sz
for 0 < s < 1,

then a translate of the composition operator Cϕ is a universal operator.

In 2011, C. and Gallardo Gutiérrez showed that Cϕ is unitarily equivalent to

the adjoint of the analytic Toeplitz operator Tψ where ψ is the covering map

of the disk onto the interior of the annulus σ(Cϕ).

In C.’s thesis (’76): The analytic Toeplitz operators S and Tψ DO NOT

commute with non-trivial compact operators.

Also proved: IF an analytic Toeplitz operator commutes with a non-trivial

compact, then the compact operator is quasi-nilpotent.



Our Goal Today:

There is an analytic Toeplitz operator that commutes with a non-trivial

compact operator and the adjoint of the Toeplitz operator is a universal

operator in the sense of Rota.



Lemma.

For ϕ and ψ in H∞ and J an analytic map of the unit disk into itself, the

analytic Toeplitz operator Tϕ commutes with the composition operator CJ

or

Tϕ commutes with the weighted composition operator Wψ,J

if and only if

ϕ ◦ J = ϕ.

Proof:

We will skip the easy proof.



Let Ω = {z ∈ C : Im z2 > −1 and Re z < 0}, region in second quadrant

above branch of the hyperbola 2xy = −1.

Let σ be the Riemann map of D onto Ω defined by

σ(z) =
−1 + i√
z + 1

branch of
√
· on the halfplane {z : Re z > 0} satisfies

√
1 = 1.

Notice that σ(1) = (−1 + i)/
√

2, σ(0) = −1 + i, and σ(−1) =∞.

We define ϕ on the unit disk by

ϕ(z) = eσ(z) − eσ(0) = eσ(z) − e−1+i



Helpful to point out some of the properties of σ, eσ, and ϕ. Use the set

Γ = {eiθ : −π < θ < π}, the unit circle except −1, in this description.

[1] Ω = σ(D) is the region in the second quadrant of the complex plane

above the branch of the hyperbola 2xy = −1 and this branch is σ(Γ).

Moreover, σ(0) is not on the curve σ(Γ).



[1] Ω = σ(D) is the region above the branch of the hyperbola 2xy = −1.

[2] The function eσ maps curve Γ onto curve spiraling out from origin to ∂D.

Circle of radius r intersects curve eσ(Γ) in exactly one point.

Closure eσ(Γ) is the set {0} ∪ eσ(Γ) ∪ ∂D and distance eσ(0) to eσ(Γ) > 0.
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invertible function in L∞(∂D).



[1] Ω = σ(D) is the region above the branch of the hyperbola 2xy = −1.

[2] The function eσ maps curve Γ onto curve spiraling out from origin to ∂D.

Circle of radius r intersects curve eσ(Γ) in exactly one point.

Closure eσ(Γ) is the set {0} ∪ σ(Γ) ∪ ∂D and distance eσ(0) to eσ(Γ) > 0.

[3] The function eσ is infinite-to-one map of unit disk, D, onto D \ {0}.

[4] The function ϕ = eσ − e−1+i is bounded below on Γ, and therefore is an

invertible function in L∞(∂D).

Lemma.

If f is a function in H∞(D) and there is ` > 0 so that |f (eiθ)| ≥ ` almost

everywhere on the unit circle, then 1/f is in L∞(∂D) and the (non-analytic)

Toeplitz operator T1/f is a left inverse for the analytic Toeplitz operator Tf .



Lemma.

If f is a function in H∞(D) and there is ` > 0 so that |f (eiθ)| ≥ ` almost

everywhere on the unit circle, then 1/f is in L∞(∂D) and the (non-analytic)

Toeplitz operator T1/f is a left inverse for the analytic Toeplitz operator Tf .

Corollary.

The analytic Toeplitz operator Tϕ has a left inverse.

Corollary.

Toeplitz operator T∗ϕ has right inverse and T∗ϕ maps H2(D) onto itself.



The following is our first main Theorem:

Theorem.

The Toeplitz operator T∗ϕ is universal for H2(D).

Proof:

We use the Theorem of Caradus to establish the result.

The last Corollary shows that the range of T∗ϕ is all of H2(D).

For n a non-negative integer, let zn = σ−1(−1 + i + 2nπi).

For each n, the vector Kzn is in the nullspace of T∗ϕ ,

so the nullspace of T∗ϕ is infinite dimensional.

Therefore, by Caradus’ Theorem, T∗ϕ is a universal operator for H2(D).



Let J be the analytic map of the unit disk into itself given by

J(z) = σ−1(σ(z) + 2πi)

From this definition, an easy calculation shows that ϕ ◦ J = ϕ.



Let J be the analytic map of the unit disk into itself given by

J(z) = σ−1(σ(z) + 2πi)

We will show the image J(D) is a convex set in D.

Figure 1: The set J(∂D) with J(−1) = −1, J(−i), J(1), and J(i).



Recall that σ is defined by

ζ = σ(z) =
−1 + i√
z + 1

which means σ−1 is given by

σ−1(ζ) =
−2i

ζ2
− 1



Recall that σ is defined by

ζ = σ(z) =
−1 + i√
z + 1

which means σ−1 is given by

σ−1(ζ) =
−2i

ζ2
− 1

Let H be branch of the hyperbola 2x(y − 2π) = −1 in 2nd quadrant.

Since J is given by J(z) = σ−1(σ(z) + 2πi)

showing that J(D) is convex

means showing that σ−1(region above hyperbola H ) is convex.



There is a standard criterion for deciding whether the image of the unit disk

under a univalent map is convex · · · this works, but it’s tedious.

Instead, we’ll use the fact that the non-empty intersection of convex sets is

convex and exhibit J(D) as such an intersection.
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For each point, p, on the hyperbola H , there is a unique circle, Zp, passing

through 0 and tangent to the hyperbola at p.
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Lemma.

For each point, p, on the hyperbola H , there is a unique circle, Zp, passing

through 0 and tangent to the hyperbola at p.

Definition:

For each point p on the hyperbola H , let ∆p denote the triangular region

consisting of the (open) second quadrant in C intersected with the (open)

exterior of the circle Zp.

Lemma. ⋂
p∈H

∆p is the region above the hyperbola H .



For each p in H , the set {ζ−1 : ζ ∈ ∆p} is the interior of a Euclidean

triangle(!!) (or a half strip if 0 is a vertex of ∆p) two of whose sides lie on

the negative real and negative imaginary axes.
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For each p in H , the set {ζ−1 : ζ ∈ ∆p} is the interior of a Euclidean

triangle(!!) (or a half strip if 0 is a vertex of ∆p) two of whose sides lie on

the negative real and negative imaginary axes.

For each p in H , the set {ζ−2 : ζ ∈ ∆p} is the interior of a parabolic

section(!!) in the upper half plane whose straight boundary is on the real

axis. That is, for each p in H , the set {ζ−2 : ζ ∈ ∆p} is a convex set.

Since σ−1(∆p) is a convex set for each p in H and

⋂
p∈H

σ−1(∆p) = σ−1

⋂
p∈H

∆p

 = J(D)

we see that J(D) is convex.
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Because J(D) is convex, the polynomials in J are weak-star dense in H∞,

and CJ has dense range.

The function ψ(z) = (z + 1)/2 is an outer function, so Tψ has dense range.

Conclude Wψ,J = TψCJ has dense range, so W∗ψ,J is injective.

Because ψ is continuous, ψ(−1) = 0, and −1 is Denjoy-Wolff point of J ,

work of Gunatillake (2007) or C. (1980) implies Wψ,J is compact.

Main Theorem.

The operator W∗ψ,J is an injective, compact operator that commutes with the

universal operator T∗ϕ .



PLAN:

Use this result to show that every operator on a separable Hilbert space

has a non-trivial invariant subspace by:

Because T∗ϕ is universal, if A0 is a given operator on a separable Hilbert

space H, then there is an invariant subspace M for T∗ϕ such that A0 is

similar to T∗ϕ
∣∣
M

, which we will call A.

Obviously, if W∗ψ,J ALSO has M as an invariant subspace,

then W∗ψ,J
∣∣
M

is a non-zero compact that commutes with A.

But, we know that this cannot always be true!



One result that we were hopeful about was

Corollary.

If A is any bounded linear operator on a separable infinite dimensional

Hilbert space, H, there is a complex number µ and non-zero compact

operators, K1 and K2, on H such that K1(A + µI) = (A + µI)K2.



One result that we were hopeful about was

Corollary.

If A is any bounded linear operator on a separable infinite dimensional

Hilbert space, H, there is a complex number µ and non-zero compact

operators, K1 and K2, on H such that K1(A + µI) = (A + µI)K2.

But, there are trivial examples of this: If A is any invertible operator and K

is any compact operator on the same space, then K1A = A(A−1K1A) which

can be written as K1A = AK2 where K2 = (A−1K1A)



THANK YOU!


