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First realization theorem

Theorem 1.
Suppose ¢ : D — C. The following are equivalent.

(MB) ¢ is in the Schur-Agler class; that is, if k is the Szegé kernel on D then the
kernel ([1] — f* f) x k is positive;

(AD) There exists a positive kernel I such that
(1 —¢*e=Tx (1] -2"2),

(TF) There is a unitary colligation ¥ so that ¢ = Wx;

(vN) For each strict contraction T on a Hilbert space H,

le(T)I < 1.

(That is, ||7(p)|| < 1 for each continuous unital representation © of H* (D)
which is strictly contractive on the coordinate function.)
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(AD) There exists a positive kernel I such that
(1 —¢*e=Tx (1] -2"2),

(TF) There is a unitary colligation ¥ so that ¢ = Wx;

(vN) For each strict contraction T on a Hilbert space H,

le(T)I < 1.

(That is, ||7(p)|| < 1 for each continuous unital representation © of H* (D)
which is strictly contractive on the coordinate function.)

Note that if p = D+ CZ(I — AZ)™'B,

(1) =DRI+(CRT)((II)—(A’T)) (B®I),
defines a representation of H*°(D) by 7(p) = ¢(T).



Agler's realization theorem on the polydisk

Let K be the collection of all positive k on D such that for j =1,...,d,
(M= 2Z;Z)xk>0 on D%,

Zi(z) = Z;i((z21,...,2d)) = zj.
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Let K be the collection of all positive k on D such that for j =1,...,d,
(M= 2Z;Z)xk>0 on D%,

Zj(2) = Zj((21, - - - 2a)) = 2;.
Set H*(K) to be all those functions ¢ on D¢ for which there is some C' > 0 such

that then (C[1] — ¢* ¢) xk > 0 for all k € K (the infimum of such C gives a norm
making H°°(KC) a Banach algebra).

The Schur-Agler class H{®(K) is the unit ball of H*(K).

Theorem 2 (Agler).
Suppose ¢ : D* — C. The following are equivalent.
(MB) ¢ € Hi*(K);
(AD) There exist positive kernels T'j such that [1] — ¢* ¢ = 30T, % ([1] — Z; Z;);
(TF) There is a unitary colligation ¥ so that ¢ = Wx; and
N)

(v

For each tuple T = (T4, ...,Tq) of commuting strict contractions on a Hilbert
space H,
lo(Ty,.... Ta)ll < 1.

(¢)|l <1 for each continuous unital representation w of H*(K)
which is strictly contractive on the coordinate functions.)



Realization on the polydisk, continued

In the transfer function representation,
Z(z) = P;Z;(2),
J

where the P;s are orthogonal projections summing to the identity.
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Realization on the polydisk, continued

In the transfer function representation,
Z(z) = PiZ;(2),
J
where the P;s are orthogonal projections summing to the identity.

For d > 2, the Schur-Agler class is strictly contained within the unit ball of
H> (D).

The Big Question




Test functions

A collection W of functions on a set X is a collection of test functions provided,
(i) Foreach z € X,
sup{|Y(x)] : ¢ € ¥} < 1; and

(ii) for each finite set F', the unital algebra generated by |z is all of P(F) (so ¥|r
separates the points of F').
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Test functions

A collection W of functions on a set X is a collection of test functions provided,
(i) Foreach z € X,
sup{|Y(x)] : ¢ € ¥} < 1; and

(ii) for each finite set F', the unital algebra generated by |z is all of P(F) (so ¥|r
separates the points of F').

We write ICy for the collection of kernels k& such that

(1] —yYy*)*xk >0 forally €.

Define H*°(Ky) to be those functions f for which there is a C' < co such that
(C*[1] —pp*) xk) forall k € Ky.

is a positive kernel for all k € Kw. The Schur-Agler class Hi°(Kw) are all functions
for which we can choose C < 1.
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More on test functions

Suppose ¥ = {¢1,...,%q} is a finite collection of test functions and P;s are
orthogonal projections summing to the identity on &.

A unital representation p : C(¥) — B(£) has the form p(f) = Z;VII Pj f(4y).
Set Z(z) = Z;\Izl Pjvpj(z) — so Z(z) = p(E(x)), where E(z) € C(¥) is
evaluation at z.

The Agler decomposition can be phrased as

[1]—¢e"=Tx([1] - E'E), I': X xX — C(¥)" positive.

A positive kernel T has a Kolmogorov decomposition I'(x, y) = 7" (y)y(z), where
v : C(¥)* — & for some Hilbert space £, and a GNS-type construction gives a
repersentation p : C(¥) — B(#H) with p(a)y(z)b = v(z)ab.

So the Agler decomposition becomes

[ —pe" =" x([1] - Z"2Z) x~.

Given a representation 7 of H*(KCy) in B(H), it is natural to define
m(Z) = Z;\le P; ® w(1p;). This can be used to express m(Ws).

The above works even with infinitely many test functions, though p isn't so
explicit.



Yet another realization theorem

Theorem 3 (Dritschel & McCullough).

Suppose V is a collection of test functions. The following are equivalent:
(MB) € H®(Ka);
(AD) There exists a positive kernel T : X x X — Cy(¥) such that

1] —¢"e=Tx([1] - EE");

(TF) There is a unitary colligation ¥ so that p = Wy,

(vNn) ||7(f)|| <1 for each continuous unital representation w of H*(Kw) which is
strictly contractive on the test functions in W.

(vNw) ||7(f)]| < 1 for each weakly continuous unital representation m of H*(Ky)
which is contractive on the test functions in U.



Yet another realization theorem

Theorem 3 (Dritschel & McCullough).

Suppose V is a collection of test functions. The following are equivalent:
(MB) € H®(Ka);
(AD) There exists a positive kernel T : X x X — Cy(¥) such that

1] —¢"e=Tx([1] - EE");

(TF) There is a unitary colligation ¥ so that p = Wy,

(vNn) ||7(f)|| <1 for each continuous unital representation w of H*(Kw) which is
strictly contractive on the test functions in W.

(vNw) ||7(f)]| < 1 for each weakly continuous unital representation m of H*(Ky)
which is contractive on the test functions in U.

(vNs) |lw(f)]| <1 for each strongly continuous unital representation m of H*™ (Kw)
which is contractive on the test functions in V.



Yet another realization theorem

Theorem 3 (Dritschel & McCullough).

Suppose V is a collection of test functions. The following are equivalent:
(MB) € H®(Ka);
(AD) There exists a positive kernel T : X x X — Cy(¥) such that

[1] = o =T« ([1] - EE™);

(TF) There is a unitary colligation ¥ so that p = Wy,

(vNn) ||7(f)|| <1 for each continuous unital representation w of H*(Kw) which is
strictly contractive on the test functions in W.

(vNw) ||7(f)]| < 1 for each weakly continuous unital representation m of H*(Ky)
which is contractive on the test functions in U.

(vNs) |lw(f)]| <1 for each strongly continuous unital representation m of H*™ (Kw)
which is contractive on the test functions in V.

A representation 7 is weakly/strongly continuous if whenever a bounded net (pq)
converges pointwise to ¢, 7(¢a) converges weakly/strongly to ().



Yet another realization theorem

Theorem 3 (Dritschel & McCullough).

Suppose V is a collection of test functions. The following are equivalent:
(MB) € H®(Ka);
(AD) There exists a positive kernel T : X x X — Cy(¥) such that

[1] = o =T« ([1] - EE™);

(TF) There is a unitary colligation ¥ so that p = Wy,

(vNn) ||7(f)|| <1 for each continuous unital representation w of H*(Kw) which is
strictly contractive on the test functions in W.

(vNw) ||7(f)]| < 1 for each weakly continuous unital representation m of H*(Ky)
which is contractive on the test functions in U.

(vNs) |lw(f)]| <1 for each strongly continuous unital representation m of H*™ (Kw)
which is contractive on the test functions in V.

A representation 7 is weakly/strongly continuous if whenever a bounded net (pq)
converges pointwise to ¢, (o) converges weakly/strongly to m(p). Strongly
continuous is analogous to the Cy. condition.



Agler decompositions for H(D9)

Theorem 4 (Grinshpan, Kalyuzhni-Verbovetski, Vinnikov,
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Theorem 4 (Grinshpan, Kalyuzhni-Verbovetski, Vinnikov,
Woerdeman).
Suppose f € H®(D?). The following are equivalent.
(BM) f € H*(D?);
(AD) Foranyp<qe{l,...,d}
—f(2) f*(w) = Tp(z,w) [ [(1=25(2) Z} () +Tg (2,w) [ [(1 =25 (2) Z; (w)),

J#p Ji#a

I'p, I'q positive kernels;

Greg Knese has a further refinement of this result.

The Big Question redux
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Connections to real algebraic geometry?

Let {p1,...pn} be a collection of real polynomials on R?. The set
S ={x €R%: pr(x) >0 for all k} is called a (basic) semi-algebraic set.

What sorts of polynomials are nonnegative on S?

» Sums of squares: Zj q? (sum finite, g;s polynomials);
> Quadratic module: 37, pr 3, iy
> Preordering: >°_[Tpy" X2, 62, € = (e1,.. ., €n), each e, either 0 or 1.

Theorem 5 (Schmiidgen’s theorem).
Suppose f is a strictly positive polynomial on a compact semialgebraic set S.
Then f is in the preordering.

The GK-VVW theorem is a sort of complex version of Schmiidgen's theorem.
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» By a preordering A we will mean a finite subset of N with the partial ordering
n<miff n; <m;, i=1,...,d. Write e; for the tuple which is 1 at the ith
entry and zero elsewhere. We require that A contain all ¢;s.

» It happens that in what follows there is no loss of generality in assuming if
AeAand X <\ the N € A

» An important case will be that of ample preorderings, which have the property
that there is some \,, € A such that for all A € A, A < A\,

> For A € A, define ¢ := " - -4

» The collection of kernels

ICA::{k:XXX—HC:kanndforeachAEA,

[Taon, 20([1 = ipi) i 5k > 0}7

are termed the admissible kernels. (Can be defined for £(#) as well).
> H°(Ka) consisting of those functions ¢ on X for which there is a finite
constant C' > 0 such that for all k € Kj,
(C*[1] = pp") %k 20,

and ||¢|| is defined to be the smallest such C.
> The generalized Schur-Agler class is H°(K4), the unit ball of H*(KCy).
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» By Douglas’ lemma, for each A € A there exists o such that
Y5 (z) = ¥ (x)ox(z). In fact since ¥} () is right invertible, we can set
ox(@) = ¥3 (@) '3 (2).

» We refer to the functions o), A € A, as the auxiliary test functions.
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Aucxiliary test functions: the ample case

» An easy calculation shows
(VX (@) (1n — ox(@)or(y) k(@ y)¥x (4)")
= (T er (1] = 600 5 k) (w,) 2 0.

> However we do not necessarily have ([1] — oxo}) * k > 0!

» This can be rectified in the ample case.

Lemma 6. Nt
If A is ample, for each A\ € A we can extend o to an M(C? ) valued function
such that ([1] — oaoy) xk > 0.

In particular, each auxiliary test function is in H* (A, M (C™)) for an appropriate
n.
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Brehmer representations

Let 7 be a unital representation of H*(KA). We call m a Brehmer representation

if for all A € A,
[ a-m@)m(w))™ >o.

ADX; #0

A representation 7 of H>°(K ) is a strict Brehmer representation if the
inequalities are strict. It is a norm/strongly/weakly continuous Brehmer
representation if it is a Brehmer representation and whenever a bounded net (¢4 )
converges pointwise in norm to ¢ (in other words, sup,, ||¢alls < 0o and for each
z € X, ||pa(z) — @(z)|| = 0), m(va) converges in norm/strongly /weakly to ().




Another realization theorem

Theorem 7 (Realization theorem 1 ).
The following are equivalent:
L @€ H®(Kan) and [lof| < 1.

2. ¢ has an Agler decomposition; that is, there is a completely positive kernel
I': X x X — L(Cy(A), L(H)) such that for all z,y € X,

L= p@)e(y)” =D Taley) (U5 @0l (1) =5 @5 (1)) @ 1w,
A

for some positive kernels T'y.

Furthermore, in this situation, @ has a transfer function representation: there exists a
unitary colligation ¥ such that

¢ =Ws(z) :=D+CS(z)(1 — AS(x))" "B,

where S(z) = >, oA ® Px.
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Another realization theorem

Theorem 7 (Realization theorem 1 ).
The following are equivalent:
L @€ H®(Kan) and [lof| < 1.

2. ¢ has an Agler decomposition; that is, there is a completely positive kernel
I': X x X — L(Cy(A), L(H)) such that for all z,y € X,

L= p@)e(y)” =D Taley) (U5 @0l (1) =5 @5 (1)) @ 1w,
A

for some positive kernels T'y.

Furthermore, in this situation, @ has a transfer function representation: there exists a
unitary colligation ¥ such that

¢ =Ws(z) :=D+CS(z)(1 — AS(x))" "B,
where S(z) = >, oA ® Px.

Note the subtle difference between this and the usual realisation theorem: Given a
unitary colligation X, there is no guarantee that Wx, € H*(Ky).

This makes it difficult to do interpolation!



And yet another realization theorem. ..

Theorem 8 (Realization theorem II ).
Let A be an ample preordering. The following are equivalent:
1. ¢ € H®(Ka,n) and ||| < 1.

2. @ has an Agler decomposition; that is, there is a completely positive kernel
I': X x X — L(Cy(A), L(H)) such that for all z,y € X,

1= p(z)p ZFA 2,y) (U3 (@)X ()" = ¥5 (@3 (1)) © 1o,
for some positive kernels T'y.
3. @ has a transfer function representation
o =Ws(z):=D+CS(z)(1— AS(z)) "B,

Furthermore, in this case every weakly continuous Brehmer representation is
completely contractive.



The polydisk

Theorem 9 (Realization theorem |11 ).
Let X =D% W ={z}, A={A<(1,...,1)}. The following are equivalent:
1. o € H®(D%) and ||¢]lee < 1.

2. @ has an Agler decomposition; that is, there is a completely positive kernel
I': X x X — L(Cy(A), L(H)) such that for all z,y € X,

1= p(z)p ZFA 2,y) (U3 (@ ()" = ¥5 (@)U3 (1)) ® 1o,
for some positive kernels T'y.
3. @ has a transfer function representation
o =Ws(z):=D+CS(z)(1— AS(z)) "B,

Furthermore, in this case every weakly continuous Brehmer representation is
completely contractive.



The polydisk continued

Corollary 10.

Any weakly continuous
contractive.

24=1_contractive representation of H>(D?) is completely



The polydisk continued

Corollary 10.

Any weakly continuous 2%~ -contractive representation of H*(D%) is completely
contractive.

With a bit more work, we can replace 227! by 2972 In particular then, any strictly
2-contractive representation of H>°(D?) is completely contractive.



A new version of Agler's / Andé’s theorem

Theorem 11 (Realization theorem 11 ).
Let W = {sp1,1h2} on C%, A = {\ < (1,1)}. The following are equivalent:
1. ¢ € H®(Ka,n) and ||| < 1.

2. @ has an Agler decomposition; that is, there is a completely positive kernel
I': X x X — L(Cy(A), L(H)) such that for all z,y € X,

1—o@)pm)" =D Ti(,y) (1 = i(@)i(y)") ® 120,

for some positive kernels T'y.
3. @ has a transfer function representation
o =Ws(z) :=D+CS(z)(1 - AS(x))" "B,

where now S(z) = Y1 P1 @ Y2 Ps.

Furthermore, in this case any weakly continuous representation w for which
l7(:)|| < 1,4 =1,2, is completely contractive.



