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First realization theorem

Theorem 1.
Suppose ϕ : D→ C. The following are equivalent.

(MB) ϕ is in the Schur-Agler class; that is, if k is the Szegő kernel on D then the
kernel ([1]− f∗f) ? k is positive;

(AD) There exists a positive kernel Γ such that
[1]− ϕ∗ϕ = Γ ? ([1]− Z∗Z);

(TF) There is a unitary colligation Σ so that ϕ = WΣ;

(vN) For each strict contraction T on a Hilbert space H,

‖ϕ(T )‖ ≤ 1.

(That is, ‖π(ϕ)‖ ≤ 1 for each continuous unital representation π of H∞(D)
which is strictly contractive on the coordinate function.)

Note that if ϕ = D + CZ(I −AZ)−1B,

ϕ(T ) = D ⊗ I + (C ⊗ T )((I ⊗ I)− (A⊗ T ))−1(B ⊗ I),

defines a representation of H∞(D) by π(ϕ) = ϕ(T ).
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Agler’s realization theorem on the polydisk

Let K be the collection of all positive k on Dd such that for j = 1, . . . , d,

([1]− Z∗j Zj) ? k ≥ 0 on Dd,

Zj(z) = Zj((z1, . . . , zd)) = zj .

Set H∞(K) to be all those functions ϕ on Dd for which there is some C > 0 such
that then (C[1]− ϕ∗ ϕ) ? k ≥ 0 for all k ∈ K (the infimum of such C gives a norm
making H∞(K) a Banach algebra).

The Schur-Agler class H∞1 (K) is the unit ball of H∞(K).

Theorem 2 (Agler).

Suppose ϕ : Dd → C. The following are equivalent.

(MB) ϕ ∈ H∞1 (K);

(AD) There exist positive kernels Γj such that [1]− ϕ∗ ϕ =
∑d

1 Γj ? ([1]− Z∗j Zj);

(TF) There is a unitary colligation Σ so that ϕ = WΣ; and

(vN) For each tuple T = (T1, . . . , Td) of commuting strict contractions on a Hilbert
space H,

‖ϕ(T1, . . . , Td)‖ ≤ 1.

(That is, ‖π(ϕ)‖ ≤ 1 for each continuous unital representation π of H∞(K)
which is strictly contractive on the coordinate functions.)



Agler’s realization theorem on the polydisk

Let K be the collection of all positive k on Dd such that for j = 1, . . . , d,

([1]− Z∗j Zj) ? k ≥ 0 on Dd,

Zj(z) = Zj((z1, . . . , zd)) = zj .

Set H∞(K) to be all those functions ϕ on Dd for which there is some C > 0 such
that then (C[1]− ϕ∗ ϕ) ? k ≥ 0 for all k ∈ K (the infimum of such C gives a norm
making H∞(K) a Banach algebra).

The Schur-Agler class H∞1 (K) is the unit ball of H∞(K).

Theorem 2 (Agler).

Suppose ϕ : Dd → C. The following are equivalent.

(MB) ϕ ∈ H∞1 (K);

(AD) There exist positive kernels Γj such that [1]− ϕ∗ ϕ =
∑d

1 Γj ? ([1]− Z∗j Zj);

(TF) There is a unitary colligation Σ so that ϕ = WΣ; and

(vN) For each tuple T = (T1, . . . , Td) of commuting strict contractions on a Hilbert
space H,

‖ϕ(T1, . . . , Td)‖ ≤ 1.

(That is, ‖π(ϕ)‖ ≤ 1 for each continuous unital representation π of H∞(K)
which is strictly contractive on the coordinate functions.)



Agler’s realization theorem on the polydisk

Let K be the collection of all positive k on Dd such that for j = 1, . . . , d,

([1]− Z∗j Zj) ? k ≥ 0 on Dd,

Zj(z) = Zj((z1, . . . , zd)) = zj .

Set H∞(K) to be all those functions ϕ on Dd for which there is some C > 0 such
that then (C[1]− ϕ∗ ϕ) ? k ≥ 0 for all k ∈ K (the infimum of such C gives a norm
making H∞(K) a Banach algebra).

The Schur-Agler class H∞1 (K) is the unit ball of H∞(K).

Theorem 2 (Agler).

Suppose ϕ : Dd → C. The following are equivalent.

(MB) ϕ ∈ H∞1 (K);

(AD) There exist positive kernels Γj such that [1]− ϕ∗ ϕ =
∑d

1 Γj ? ([1]− Z∗j Zj);

(TF) There is a unitary colligation Σ so that ϕ = WΣ; and

(vN) For each tuple T = (T1, . . . , Td) of commuting strict contractions on a Hilbert
space H,

‖ϕ(T1, . . . , Td)‖ ≤ 1.

(That is, ‖π(ϕ)‖ ≤ 1 for each continuous unital representation π of H∞(K)
which is strictly contractive on the coordinate functions.)



Agler’s realization theorem on the polydisk

Let K be the collection of all positive k on Dd such that for j = 1, . . . , d,

([1]− Z∗j Zj) ? k ≥ 0 on Dd,

Zj(z) = Zj((z1, . . . , zd)) = zj .

Set H∞(K) to be all those functions ϕ on Dd for which there is some C > 0 such
that then (C[1]− ϕ∗ ϕ) ? k ≥ 0 for all k ∈ K (the infimum of such C gives a norm
making H∞(K) a Banach algebra).

The Schur-Agler class H∞1 (K) is the unit ball of H∞(K).

Theorem 2 (Agler).

Suppose ϕ : Dd → C. The following are equivalent.

(MB) ϕ ∈ H∞1 (K);

(AD) There exist positive kernels Γj such that [1]− ϕ∗ ϕ =
∑d

1 Γj ? ([1]− Z∗j Zj);

(TF) There is a unitary colligation Σ so that ϕ = WΣ; and

(vN) For each tuple T = (T1, . . . , Td) of commuting strict contractions on a Hilbert
space H,

‖ϕ(T1, . . . , Td)‖ ≤ 1.

(That is, ‖π(ϕ)‖ ≤ 1 for each continuous unital representation π of H∞(K)
which is strictly contractive on the coordinate functions.)



Realization on the polydisk, continued

In the transfer function representation,

Z(z) =
∑
j

PjZj(z),

where the Pjs are orthogonal projections summing to the identity.

For d > 2, the Schur-Agler class is strictly contained within the unit ball of
H∞(Dd).

The Big Question

Can we realize the rest of H∞1 (Dd)?
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Test functions

A collection Ψ of functions on a set X is a collection of test functions provided,

(i) For each x ∈ X,
sup{|ψ(x)| : ψ ∈ Ψ} < 1; and

(ii) for each finite set F , the unital algebra generated by Ψ|F is all of P (F ) (so Ψ|F
separates the points of F ).

We write KΨ for the collection of kernels k such that

([1]− ψψ∗) ? k ≥ 0 for all ψ ∈ Ψ.

Define H∞(KΨ) to be those functions f for which there is a C <∞ such that(
(C2[1]− ϕϕ∗) ? k

)
for all k ∈ KΨ.

is a positive kernel for all k ∈ KΨ. The Schur-Agler class H∞1 (KΨ) are all functions
for which we can choose C ≤ 1.
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More on test functions

Suppose Ψ = {ψ1, . . . , ψd} is a finite collection of test functions and Pjs are
orthogonal projections summing to the identity on E .

A unital representation ρ : C(Ψ)→ B(E) has the form ρ(f) =
∑N
j=1 Pj f(ψj).

Set Z(x) =
∑N
j=1 Pjψj(x) — so Z(x) = ρ(E(x)), where E(x) ∈ C(Ψ) is

evaluation at x.

The Agler decomposition can be phrased as

[1]− ϕϕ∗ = Γ ? ([1]− E∗E), Γ : X ×X → C(Ψ)∗ positive.

A positive kernel Γ has a Kolmogorov decomposition Γ(x, y) = γ∗(y)γ(x), where
γ : C(Ψ)∗ → E for some Hilbert space E , and a GNS-type construction gives a
repersentation ρ : C(Ψ)→ B(H) with ρ(a)γ(x)b = γ(x)ab.

So the Agler decomposition becomes

[1]− ϕϕ∗ = γ∗ ? ([1]− Z∗Z) ? γ.

Given a representation π of H∞(KΨ) in B(H), it is natural to define
π(Z) =

∑N
j=1 Pj ⊗ π(ψj). This can be used to express π(WΣ).

The above works even with infinitely many test functions, though ρ isn’t so
explicit.
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Yet another realization theorem

Theorem 3 (Dritschel & McCullough).

Suppose Ψ is a collection of test functions. The following are equivalent:

(MB) ϕ ∈ H∞1 (KΨ);

(AD) There exists a positive kernel Γ : X ×X → Cb(Ψ) such that

[1]− ϕ∗ϕ = Γ ? ([1]− EE∗);

(TF) There is a unitary colligation Σ so that ϕ = WΣ;

(vNn) ‖π(f)‖ ≤ 1 for each continuous unital representation π of H∞(KΨ) which is
strictly contractive on the test functions in Ψ.

(vNw) ‖π(f)‖ ≤ 1 for each weakly continuous unital representation π of H∞(KΨ)
which is contractive on the test functions in Ψ.

(vNs) ‖π(f)‖ ≤ 1 for each strongly continuous unital representation π of H∞(KΨ)
which is contractive on the test functions in Ψ.

A representation π is weakly/strongly continuous if whenever a bounded net (ϕα)
converges pointwise to ϕ, π(ϕα) converges weakly/strongly to π(ϕ). Strongly
continuous is analogous to the C0 · condition.
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Agler decompositions for H∞
1 (Dd)

Theorem 4 (Grinshpan, Kalyuzhni-Verbovetski, Vinnikov,
Woerdeman).

Suppose f ∈ H∞(Dd). The following are equivalent.

(BM) f ∈ H∞1 (Dd);

(AD) For any p < q ∈ {1, . . . , d}

1−f(z) f∗(w) = Γp(z, w)
∏
j 6=p

(1−Zj(z)Z∗j (w))+Γq(z, w)
∏
j 6=q

(1−Zj(z)Z∗j (w)),

Γp, Γq positive kernels;

Greg Knese has a further refinement of this result.

The Big Question redux

What about the rest of the realization theorem? Do we really need to initially assume
f ∈ H∞(Dd)?
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Connections to real algebraic geometry?

Let {p1, . . . pn} be a collection of real polynomials on Rd. The set
S = {x ∈ Rd : pk(x) ≥ 0 for all k} is called a (basic) semi-algebraic set.

What sorts of polynomials are nonnegative on S?

I Sums of squares:
∑
j q

2
j (sum finite, qjs polynomials);

I Quadratic module:
∑
k pk

∑
j q

2
kj ;

I Preordering:
∑
ε

∏
p
εk
k

∑
j q

2
εj , ε = (ε1, . . . , εn), each εk either 0 or 1.

Theorem 5 (Schmüdgen’s theorem).

Suppose f is a strictly positive polynomial on a compact semialgebraic set S.
Then f is in the preordering.

The GK-VVW theorem is a sort of complex version of Schmüdgen’s theorem.
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Theorem 5 (Schmüdgen’s theorem).

Suppose f is a strictly positive polynomial on a compact semialgebraic set S.
Then f is in the preordering.

The GK-VVW theorem is a sort of complex version of Schmüdgen’s theorem.



Some notation

I Assume we have a finite set of test functions Ψ, |Ψ| = d, on a set X.

I By a preordering Λ we will mean a finite subset of Nd with the partial ordering
n ≤ m iff ni ≤ mi, i = 1, . . . , d. Write ei for the tuple which is 1 at the ith
entry and zero elsewhere. We require that Λ contain all eis.

I It happens that in what follows there is no loss of generality in assuming if
λ ∈ Λ and λ′ ≤ λ, the λ′ ∈ Λ.

I An important case will be that of ample preorderings, which have the property
that there is some λm ∈ Λ such that for all λ ∈ Λ, λ ≤ λm.

I For λ ∈ Λ, define ψλ := ψλ1
1 · · ·ψ

λd
d .

I The collection of kernels

KΛ :=
{
k : X ×X → C : k ≥ 0 and for each λ ∈ Λ,∏

λ3λi 6=0([1]− ψiψ∗i )λi ∗ k ≥ 0
}
,

are termed the admissible kernels. (Can be defined for L(H) as well).
I H∞(KΛ) consisting of those functions ϕ on X for which there is a finite

constant C ≥ 0 such that for all k ∈ KΛ,

(C2[1]− ϕϕ∗) ? k ≥ 0,

and ‖ϕ‖ is defined to be the smallest such C.
I The generalized Schur-Agler class is H∞1 (KΛ), the unit ball of H∞(KΛ).
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More notation

I Define vectors of length 2d−1 from the components of any ψ ∈ Λ by

ψ+
λ (x)∗ =



...
ψλ1(x)∗ψλ2(x)∗ψλ3(x)∗ψλ4(x)∗

ψλd−1(x)∗ψλd(x)∗

...
ψλ1(x)∗ψλ3(x)∗

ψλ2(x)∗ψλ1(x)∗

1


and ψ−λ (x)∗ =



...
ψλ1(x)∗ψλ2(x)∗ψλ4(x)∗

ψλ1(x)∗ψλ2(x)∗ψλ3(x)∗

ψλd(x)∗

...
ψλ2(x)∗

ψλ1(x)∗



I For λ ∈ Λ,∏
λi∈λ([1]− ψ∗λiψλi)(x, y) = ψ+

λ (x)ψ+
λ (y)∗ − ψ−λ (x)ψ−λ (y)∗

I By Douglas’ lemma, for each λ ∈ Λ there exists σλ such that
ψ−λ (x) = ψ+

λ (x)σλ(x). In fact since ψ+
λ (x) is right invertible, we can set

σλ(x) = ψ+
λ (x)−1ψ−λ (x).

I We refer to the functions σλ, λ ∈ Λ, as the auxiliary test functions.
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Auxiliary test functions: the ample case

I An easy calculation shows(
ψ+
λ (x)(1n − σλ(x)σλ(y)∗)k(x, y)ψ+

λ (y)∗
)

=
(∏

λi∈λ([1]− ψiψ∗i )λi ∗ k
)

(x, y) ≥ 0.

I However we do not necessarily have ([1]− σλσ∗λ) ∗ k ≥ 0!

I This can be rectified in the ample case.

Lemma 6.
If Λ is ample, for each λ ∈ Λ we can extend σλ to an M(C2|λ|−1

) valued function
such that ([1]− σλσ∗λ) ∗ k ≥ 0.

In particular, each auxiliary test function is in H∞(Λ,M(Cn)) for an appropriate
n.
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I This can be rectified in the ample case.
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If Λ is ample, for each λ ∈ Λ we can extend σλ to an M(C2|λ|−1

) valued function
such that ([1]− σλσ∗λ) ∗ k ≥ 0.

In particular, each auxiliary test function is in H∞(Λ,M(Cn)) for an appropriate
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Brehmer representations

Let π be a unital representation of H∞(KΛ). We call π a Brehmer representation
if for all λ ∈ Λ, ∏

λ3λi 6=0

(1− π(ψi)π(ψi)
∗)λi ≥ 0.

A representation π of H∞(KΛ) is a strict Brehmer representation if the
inequalities are strict. It is a norm/strongly/weakly continuous Brehmer
representation if it is a Brehmer representation and whenever a bounded net (ϕα)
converges pointwise in norm to ϕ (in other words, supα ‖ϕα‖∞ <∞ and for each
x ∈ X, ‖ϕα(x)− ϕ(x)‖ → 0), π(ϕα) converges in norm/strongly/weakly to π(ϕ).
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Another realization theorem

Theorem 7 (Realization theorem I ).

The following are equivalent:

1. ϕ ∈ H∞(KΛ,H) and ‖ϕ‖ ≤ 1.

2. ϕ has an Agler decomposition; that is, there is a completely positive kernel
Γ : X ×X → L(Cb(Λ),L(H)) such that for all x, y ∈ X,

1− ϕ(x)ϕ(y)∗ =
∑
λ

Γλ(x, y)
(
ψ+
λ (x)ψ+

λ (y)∗ − ψ−λ (x)ψ−λ (y)∗
)
⊗ 1L(H),

for some positive kernels Γλ.

Furthermore, in this situation, ϕ has a transfer function representation: there exists a
unitary colligation Σ such that

ϕ = WΣ(x) := D + CS(x)(1−AS(x))−1B,

where S(x) =
∑
λ σλ ⊗ Pλ.

Note the subtle difference between this and the usual realisation theorem: Given a
unitary colligation Σ, there is no guarantee that WΣ ∈ H∞(KΛ).

This makes it difficult to do interpolation!
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And yet another realization theorem. . .

Theorem 8 (Realization theorem II ).

Let Λ be an ample preordering. The following are equivalent:

1. ϕ ∈ H∞(KΛ,H) and ‖ϕ‖ ≤ 1.

2. ϕ has an Agler decomposition; that is, there is a completely positive kernel
Γ : X ×X → L(Cb(Λ),L(H)) such that for all x, y ∈ X,

1− ϕ(x)ϕ(y)∗ =
∑
λ

Γλ(x, y)
(
ψ+
λ (x)ψ+

λ (y)∗ − ψ−λ (x)ψ−λ (y)∗
)
⊗ 1L(H),

for some positive kernels Γλ.

3. ϕ has a transfer function representation

ϕ = WΣ(x) := D + CS(x)(1−AS(x))−1B,

Furthermore, in this case every weakly continuous Brehmer representation is
completely contractive.



The polydisk

Theorem 9 (Realization theorem III ).

Let X = Dd, Ψ = {zj}, Λ = {λ ≤ (1, . . . , 1)}. The following are equivalent:

1. ϕ ∈ H∞(Dd) and ‖ϕ‖∞ ≤ 1.

2. ϕ has an Agler decomposition; that is, there is a completely positive kernel
Γ : X ×X → L(Cb(Λ),L(H)) such that for all x, y ∈ X,

1− ϕ(x)ϕ(y)∗ =
∑
λ

Γλ(x, y)
(
ψ+
λ (x)ψ+

λ (y)∗ − ψ−λ (x)ψ−λ (y)∗
)
⊗ 1L(H),

for some positive kernels Γλ.

3. ϕ has a transfer function representation

ϕ = WΣ(x) := D + CS(x)(1−AS(x))−1B,

Furthermore, in this case every weakly continuous Brehmer representation is
completely contractive.



The polydisk continued

Corollary 10.

Any weakly continuous 2d−1-contractive representation of H∞(Dd) is completely
contractive.

With a bit more work, we can replace 2d−1 by 2d−2. In particular then, any strictly
2-contractive representation of H∞(D3) is completely contractive.
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A new version of Agler’s / Andô’s theorem

Theorem 11 (Realization theorem II′ ).

Let Ψ = {ψ1, ψ2} on Cd, Λ = {λ ≤ (1, 1)}. The following are equivalent:

1. ϕ ∈ H∞(KΛ,H) and ‖ϕ‖ ≤ 1.

2. ϕ has an Agler decomposition; that is, there is a completely positive kernel
Γ : X ×X → L(Cb(Λ),L(H)) such that for all x, y ∈ X,

1− ϕ(x)ϕ(y)∗ =
∑
λ

Γi(x, y) (1− ψi(x)ψi(y)∗)⊗ 1L(H),

for some positive kernels Γλ.

3. ϕ has a transfer function representation

ϕ = WΣ(x) := D + CS(x)(1−AS(x))−1B,

where now S(x) = ψ1P1 ⊕ ψ2P2.

Furthermore, in this case any weakly continuous representation π for which
‖π(ψi)‖ ≤ 1, i = 1, 2, is completely contractive.


