Realizations via preorders

Michael Dritschel

24 May 2013

Theorem 1.

Suppose $\varphi : \mathbb{D} \to \mathbb{C}$. The following are equivalent.

- (MB) φ is in the Schur-Agler class; that is, if k is the Szegő kernel on \mathbb{D} then the kernel $([1] f^*f) \star k$ is positive;
- (AD) There exists a positive kernel Γ such that $[1] \varphi^* \varphi = \Gamma \star ([1] Z^*Z);$
- (TF) There is a unitary colligation Σ so that $\varphi = W_{\Sigma}$;
- (vN) For each strict contraction T on a Hilbert space \mathcal{H} ,

 $\|\varphi(T)\| \leq 1.$

(That is, $\|\pi(\varphi)\| \leq 1$ for each continuous unital representation π of $H^{\infty}(\mathbb{D})$ which is strictly contractive on the coordinate function.)

Theorem 1.

Suppose $\varphi : \mathbb{D} \to \mathbb{C}$. The following are equivalent.

- (MB) φ is in the Schur-Agler class; that is, if k is the Szegő kernel on \mathbb{D} then the kernel $([1] f^*f) \star k$ is positive;
- (AD) There exists a positive kernel Γ such that $[1] \varphi^* \varphi = \Gamma \star ([1] Z^*Z);$
- (TF) There is a unitary colligation Σ so that $\varphi = W_{\Sigma}$;
- (vN) For each strict contraction T on a Hilbert space \mathcal{H} ,

 $\|\varphi(T)\| \le 1.$

(That is, $\|\pi(\varphi)\| \leq 1$ for each continuous unital representation π of $H^{\infty}(\mathbb{D})$ which is strictly contractive on the coordinate function.)

Note that if $\varphi = D + CZ(I - AZ)^{-1}B$,

$$\varphi(T) = D \otimes I + (C \otimes T)((I \otimes I) - (A \otimes T))^{-1}(B \otimes I),$$

defines a representation of $H^{\infty}(\mathbb{D})$ by $\pi(\varphi) = \varphi(T)$.

Let $\mathcal K$ be the collection of all positive k on $\mathbb D^d$ such that for $j=1,\ldots,d$,

$$([1] - Z_j^* Z_j) \star k \ge 0 \qquad \text{on } \mathbb{D}^d,$$

 $Z_j(z) = Z_j((z_1,\ldots,z_d)) = z_j.$

Let \mathcal{K} be the collection of all positive k on \mathbb{D}^d such that for $j = 1, \ldots, d$,

$$([1] - Z_j^* Z_j) \star k \ge 0 \qquad \text{on } \mathbb{D}^d,$$

 $Z_j(z) = Z_j((z_1,\ldots,z_d)) = z_j.$

Set $H^{\infty}(\mathcal{K})$ to be all those functions φ on \mathbb{D}^d for which there is some C > 0 such that then $(C[1] - \varphi^* \varphi) \star k \ge 0$ for all $k \in \mathcal{K}$ (the infimum of such C gives a norm making $H^{\infty}(\mathcal{K})$ a Banach algebra).

Let \mathcal{K} be the collection of all positive k on \mathbb{D}^d such that for $j = 1, \ldots, d$,

$$([1] - Z_j^* Z_j) \star k \ge 0 \qquad \text{on } \mathbb{D}^d,$$

 $Z_j(z) = Z_j((z_1,\ldots,z_d)) = z_j.$

Set $H^{\infty}(\mathcal{K})$ to be all those functions φ on \mathbb{D}^d for which there is some C > 0 such that then $(C[1] - \varphi^* \varphi) \star k \ge 0$ for all $k \in \mathcal{K}$ (the infimum of such C gives a norm making $H^{\infty}(\mathcal{K})$ a Banach algebra).

The Schur-Agler class $H_1^{\infty}(\mathcal{K})$ is the unit ball of $H^{\infty}(\mathcal{K})$.

Let \mathcal{K} be the collection of all positive k on \mathbb{D}^d such that for $j = 1, \ldots, d$,

$$([1] - Z_j^* Z_j) \star k \ge 0 \qquad \text{on } \mathbb{D}^d,$$

 $Z_j(z) = Z_j((z_1,\ldots,z_d)) = z_j.$

Set $H^{\infty}(\mathcal{K})$ to be all those functions φ on \mathbb{D}^d for which there is some C > 0 such that then $(C[1] - \varphi^* \varphi) \star k \ge 0$ for all $k \in \mathcal{K}$ (the infimum of such C gives a norm making $H^{\infty}(\mathcal{K})$ a Banach algebra).

The Schur-Agler class $H_1^{\infty}(\mathcal{K})$ is the unit ball of $H^{\infty}(\mathcal{K})$.

Theorem 2 (Agler).

Suppose $\varphi : \mathbb{D}^d \to \mathbb{C}$. The following are equivalent.

- (MB) $\varphi \in H_1^\infty(\mathcal{K});$
- (AD) There exist positive kernels Γ_j such that $[1] \varphi^* \varphi = \sum_{j=1}^{d} \Gamma_j \star ([1] Z_j^* Z_j);$
- (TF) There is a unitary colligation Σ so that $\varphi = W_{\Sigma}$; and
- (vN) For each tuple $T = (T_1, \ldots, T_d)$ of commuting strict contractions on a Hilbert space \mathcal{H} ,

$$\|\varphi(T_1,\ldots,T_d)\|\leq 1.$$

(That is, $\|\pi(\varphi)\| \leq 1$ for each continuous unital representation π of $H^{\infty}(\mathcal{K})$ which is strictly contractive on the coordinate functions.)

In the transfer function representation,

$$Z(z) = \sum_{j} P_j Z_j(z),$$

where the P_j s are orthogonal projections summing to the identity.

In the transfer function representation,

$$Z(z) = \sum_{j} P_j Z_j(z),$$

where the P_j s are orthogonal projections summing to the identity.

For d>2, the Schur-Agler class is strictly contained within the unit ball of $H^{\infty}(\mathbb{D}^d)$.

In the transfer function representation,

$$Z(z) = \sum_{j} P_j Z_j(z),$$

where the P_j s are orthogonal projections summing to the identity.

For d>2, the Schur-Agler class is strictly contained within the unit ball of $H^\infty(\mathbb{D}^d).$

The Big Question

Can we realize the rest of $H_1^{\infty}(\mathbb{D}^d)$?

A collection Ψ of functions on a set X is a collection of *test functions* provided, (i) For each $x \in X$,

```
\sup\{|\psi(x)|:\psi\in\Psi\}<1;\text{ and }
```

(ii) for each finite set F, the unital algebra generated by $\Psi|_F$ is all of P(F) (so $\Psi|_F$ separates the points of F).

A collection Ψ of functions on a set X is a collection of *test functions* provided, (i) For each $x \in X$,

$$\sup\{|\psi(x)|: \psi \in \Psi\} < 1; \text{ and }$$

(ii) for each finite set F, the unital algebra generated by $\Psi|_F$ is all of P(F) (so $\Psi|_F$ separates the points of F).

We write \mathcal{K}_{Ψ} for the collection of kernels k such that

 $([1] - \psi \psi^*) \star k \ge 0 \quad \text{for all } \psi \in \Psi.$

A collection Ψ of functions on a set X is a collection of *test functions* provided, (i) For each $x \in X$,

$$\sup\{|\psi(x)|:\psi\in\Psi\}<1;$$
 and

(ii) for each finite set F, the unital algebra generated by $\Psi|_F$ is all of P(F) (so $\Psi|_F$ separates the points of F).

We write \mathcal{K}_{Ψ} for the collection of kernels k such that

$$([1] - \psi \psi^*) \star k \ge 0 \quad \text{for all } \psi \in \Psi.$$

Define $H^{\infty}(\mathcal{K}_{\Psi})$ to be those functions f for which there is a $C < \infty$ such that

$$\left((C^2[1] - \varphi \, \varphi^*) \star k \right) \quad \text{for all } k \in \mathcal{K}_{\Psi}.$$

is a positive kernel for all $k \in \mathcal{K}_{\Psi}$. The *Schur-Agler class* $H_1^{\infty}(\mathcal{K}_{\Psi})$ are all functions for which we can choose $C \leq 1$.

Suppose $\Psi = \{\psi_1, \ldots, \psi_d\}$ is a finite collection of test functions and P_j s are orthogonal projections summing to the identity on \mathcal{E} .

Suppose $\Psi = \{\psi_1, \dots, \psi_d\}$ is a finite collection of test functions and P_j s are orthogonal projections summing to the identity on \mathcal{E} .

A unital representation $\rho: C(\Psi) \to B(\mathcal{E})$ has the form $\rho(f) = \sum_{j=1}^{N} P_j f(\psi_j)$.

Suppose $\Psi = \{\psi_1, \ldots, \psi_d\}$ is a finite collection of test functions and P_j s are orthogonal projections summing to the identity on \mathcal{E} .

A unital representation $\rho: C(\Psi) \to B(\mathcal{E})$ has the form $\rho(f) = \sum_{i=1}^{N} P_j f(\psi_j)$.

Set $Z(x) = \sum_{j=1}^{N} P_j \psi_j(x)$ — so $Z(x) = \rho(E(x))$, where $E(x) \in C(\Psi)$ is evaluation at x.

Suppose $\Psi = \{\psi_1, \dots, \psi_d\}$ is a finite collection of test functions and P_j s are orthogonal projections summing to the identity on \mathcal{E} .

A unital representation $\rho: C(\Psi) \to B(\mathcal{E})$ has the form $\rho(f) = \sum_{j=1}^{N} P_j f(\psi_j)$.

Set $Z(x) = \sum_{j=1}^{N} P_j \psi_j(x)$ — so $Z(x) = \rho(E(x))$, where $E(x) \in C(\Psi)$ is evaluation at x.

The Agler decomposition can be phrased as

 $[1] - \varphi \, \varphi^* = \Gamma \star ([1] - E^*E), \qquad \Gamma : X \times X \to C(\Psi)^* \text{ positive}.$

Suppose $\Psi = \{\psi_1, \ldots, \psi_d\}$ is a finite collection of test functions and P_j s are orthogonal projections summing to the identity on \mathcal{E} .

A unital representation $\rho: C(\Psi) \to B(\mathcal{E})$ has the form $\rho(f) = \sum_{j=1}^{N} P_j f(\psi_j)$.

Set $Z(x) = \sum_{j=1}^{N} P_j \psi_j(x)$ — so $Z(x) = \rho(E(x))$, where $E(x) \in C(\Psi)$ is evaluation at x.

The Agler decomposition can be phrased as

 $[1] - \varphi \, \varphi^* = \Gamma \star ([1] - E^* E), \qquad \Gamma : X \times X \to C(\Psi)^* \text{ positive}.$

A positive kernel Γ has a Kolmogorov decomposition $\Gamma(x, y) = \gamma^*(y)\gamma(x)$, where $\gamma: C(\Psi)^* \to \mathcal{E}$ for some Hilbert space \mathcal{E} , and a GNS-type construction gives a repersentation $\rho: C(\Psi) \to \mathcal{B}(\mathcal{H})$ with $\rho(a)\gamma(x)b = \gamma(x)ab$.

Suppose $\Psi = \{\psi_1, \ldots, \psi_d\}$ is a finite collection of test functions and P_j s are orthogonal projections summing to the identity on \mathcal{E} .

A unital representation $\rho: C(\Psi) \to B(\mathcal{E})$ has the form $\rho(f) = \sum_{i=1}^{N} P_j f(\psi_j)$.

Set $Z(x) = \sum_{j=1}^{N} P_j \psi_j(x)$ — so $Z(x) = \rho(E(x))$, where $E(x) \in C(\Psi)$ is evaluation at x.

The Agler decomposition can be phrased as

$$[1] - \varphi \, \varphi^* = \Gamma \star ([1] - E^* E), \qquad \Gamma : X \times X \to C(\Psi)^* \text{ positive.}$$

A positive kernel Γ has a Kolmogorov decomposition $\Gamma(x, y) = \gamma^*(y)\gamma(x)$, where $\gamma : C(\Psi)^* \to \mathcal{E}$ for some Hilbert space \mathcal{E} , and a GNS-type construction gives a repersentation $\rho : C(\Psi) \to \mathcal{B}(\mathcal{H})$ with $\rho(a)\gamma(x)b = \gamma(x)ab$.

So the Agler decomposition becomes

$$[1] - \varphi \,\varphi^* = \gamma^* \star ([1] - Z^*Z) \star \gamma.$$

Suppose $\Psi = \{\psi_1, \ldots, \psi_d\}$ is a finite collection of test functions and P_j s are orthogonal projections summing to the identity on \mathcal{E} .

A unital representation $\rho: C(\Psi) \to B(\mathcal{E})$ has the form $\rho(f) = \sum_{j=1}^{N} P_j f(\psi_j)$.

Set $Z(x) = \sum_{j=1}^{N} P_j \psi_j(x)$ — so $Z(x) = \rho(E(x))$, where $E(x) \in C(\Psi)$ is evaluation at x.

The Agler decomposition can be phrased as

$$[1] - \varphi \varphi^* = \Gamma \star ([1] - E^* E), \qquad \Gamma : X \times X \to C(\Psi)^* \text{ positive.}$$

A positive kernel Γ has a Kolmogorov decomposition $\Gamma(x, y) = \gamma^*(y)\gamma(x)$, where $\gamma : C(\Psi)^* \to \mathcal{E}$ for some Hilbert space \mathcal{E} , and a GNS-type construction gives a repersentation $\rho : C(\Psi) \to \mathcal{B}(\mathcal{H})$ with $\rho(a)\gamma(x)b = \gamma(x)ab$.

So the Agler decomposition becomes

$$[1] - \varphi \,\varphi^* = \gamma^* \star ([1] - Z^*Z) \star \gamma.$$

Given a representation π of $H^{\infty}(\mathcal{K}_{\Psi})$ in $B(\mathcal{H})$, it is natural to define $\pi(Z) = \sum_{j=1}^{N} P_j \otimes \pi(\psi_j)$. This can be used to express $\pi(W_{\Sigma})$.

Suppose $\Psi = \{\psi_1, \ldots, \psi_d\}$ is a finite collection of test functions and P_j s are orthogonal projections summing to the identity on \mathcal{E} .

A unital representation $\rho: C(\Psi) \to B(\mathcal{E})$ has the form $\rho(f) = \sum_{i=1}^{N} P_j f(\psi_j)$.

Set $Z(x) = \sum_{j=1}^{N} P_j \psi_j(x)$ — so $Z(x) = \rho(E(x))$, where $E(x) \in C(\Psi)$ is evaluation at x.

The Agler decomposition can be phrased as

$$[1] - \varphi \varphi^* = \Gamma \star ([1] - E^*E), \qquad \Gamma : X \times X \to C(\Psi)^* \text{ positive}.$$

A positive kernel Γ has a Kolmogorov decomposition $\Gamma(x, y) = \gamma^*(y)\gamma(x)$, where $\gamma : C(\Psi)^* \to \mathcal{E}$ for some Hilbert space \mathcal{E} , and a GNS-type construction gives a repersentation $\rho : C(\Psi) \to \mathcal{B}(\mathcal{H})$ with $\rho(a)\gamma(x)b = \gamma(x)ab$.

So the Agler decomposition becomes

$$[1] - \varphi \,\varphi^* = \gamma^* \star ([1] - Z^* Z) \star \gamma.$$

Given a representation π of $H^{\infty}(\mathcal{K}_{\Psi})$ in $B(\mathcal{H})$, it is natural to define $\pi(Z) = \sum_{j=1}^{N} P_j \otimes \pi(\psi_j)$. This can be used to express $\pi(W_{\Sigma})$.

The above works even with infinitely many test functions, though ρ isn't so explicit.

Suppose Ψ is a collection of test functions. The following are equivalent: (MB) $\varphi \in H_1^{\infty}(\mathcal{K}_{\Psi})$;

(AD) There exists a positive kernel $\Gamma: X \times X \to C_b(\Psi)$ such that

$$[1] - \varphi^* \varphi = \Gamma \star ([1] - EE^*);$$

- (TF) There is a unitary colligation Σ so that $\varphi = W_{\Sigma}$;
- (vNn) $\|\pi(f)\| \leq 1$ for each continuous unital representation π of $H^{\infty}(\mathcal{K}_{\Psi})$ which is strictly contractive on the test functions in Ψ .
- (vNw) $\|\pi(f)\| \leq 1$ for each weakly continuous unital representation π of $H^{\infty}(\mathcal{K}_{\Psi})$ which is contractive on the test functions in Ψ .

Suppose Ψ is a collection of test functions. The following are equivalent: (MB) $\varphi \in H_1^{\infty}(\mathcal{K}_{\Psi})$;

(AD) There exists a positive kernel $\Gamma: X \times X \to C_b(\Psi)$ such that

$$[1] - \varphi^* \varphi = \Gamma \star ([1] - EE^*);$$

- (TF) There is a unitary colligation Σ so that $\varphi = W_{\Sigma}$;
- (vNn) $\|\pi(f)\| \leq 1$ for each continuous unital representation π of $H^{\infty}(\mathcal{K}_{\Psi})$ which is strictly contractive on the test functions in Ψ .
- (vNw) $\|\pi(f)\| \leq 1$ for each weakly continuous unital representation π of $H^{\infty}(\mathcal{K}_{\Psi})$ which is contractive on the test functions in Ψ .
- (vNs) $\|\pi(f)\| \leq 1$ for each strongly continuous unital representation π of $H^{\infty}(\mathcal{K}_{\Psi})$ which is contractive on the test functions in Ψ .

Suppose Ψ is a collection of test functions. The following are equivalent: (MB) $\varphi \in H_1^{\infty}(\mathcal{K}_{\Psi})$;

(AD) There exists a positive kernel $\Gamma: X \times X \to C_b(\Psi)$ such that

$$[1] - \varphi^* \varphi = \Gamma \star ([1] - EE^*);$$

- (TF) There is a unitary colligation Σ so that $\varphi = W_{\Sigma}$;
- (vNn) $\|\pi(f)\| \leq 1$ for each continuous unital representation π of $H^{\infty}(\mathcal{K}_{\Psi})$ which is strictly contractive on the test functions in Ψ .
- (vNw) $\|\pi(f)\| \leq 1$ for each weakly continuous unital representation π of $H^{\infty}(\mathcal{K}_{\Psi})$ which is contractive on the test functions in Ψ .
- (vNs) $\|\pi(f)\| \leq 1$ for each strongly continuous unital representation π of $H^{\infty}(\mathcal{K}_{\Psi})$ which is contractive on the test functions in Ψ .

A representation π is *weakly/strongly continuous* if whenever a bounded net (φ_{α}) converges pointwise to φ , $\pi(\varphi_{\alpha})$ converges weakly/strongly to $\pi(\varphi)$.

Suppose Ψ is a collection of test functions. The following are equivalent: (MB) $\varphi \in H_1^{\infty}(\mathcal{K}_{\Psi})$;

(AD) There exists a positive kernel $\Gamma: X \times X \to C_b(\Psi)$ such that

$$[1] - \varphi^* \varphi = \Gamma \star ([1] - EE^*);$$

- (TF) There is a unitary colligation Σ so that $\varphi = W_{\Sigma}$;
- (vNn) $\|\pi(f)\| \leq 1$ for each continuous unital representation π of $H^{\infty}(\mathcal{K}_{\Psi})$ which is strictly contractive on the test functions in Ψ .
- (vNw) $\|\pi(f)\| \leq 1$ for each weakly continuous unital representation π of $H^{\infty}(\mathcal{K}_{\Psi})$ which is contractive on the test functions in Ψ .
- (vNs) $\|\pi(f)\| \leq 1$ for each strongly continuous unital representation π of $H^{\infty}(\mathcal{K}_{\Psi})$ which is contractive on the test functions in Ψ .

A representation π is *weakly/strongly continuous* if whenever a bounded net (φ_{α}) converges pointwise to φ , $\pi(\varphi_{\alpha})$ converges weakly/strongly to $\pi(\varphi)$. Strongly continuous is analogous to the C_0 . condition.

Theorem 4 (Grinshpan, Kalyuzhni-Verbovetski, Vinnikov, Woerdeman).

Suppose $f \in H^{\infty}(\mathbb{D}^d)$. The following are equivalent. (BM) $f \in H_1^{\infty}(\mathbb{D}^d)$; (AD) For any $p < q \in \{1, ..., d\}$ $1 - f(z) f^*(w) = \Gamma_p(z, w) \prod_{j \neq p} (1 - Z_j(z)Z_j^*(w)) + \Gamma_q(z, w) \prod_{j \neq q} (1 - Z_j(z)Z_j^*(w))$,

 Γ_p , Γ_q positive kernels;

Theorem 4 (Grinshpan, Kalyuzhni-Verbovetski, Vinnikov, Woerdeman).

Suppose $f \in H^{\infty}(\mathbb{D}^d)$. The following are equivalent. (BM) $f \in H_1^{\infty}(\mathbb{D}^d)$; (AD) For any $p < q \in \{1, \dots, d\}$ $1 - f(z) f^*(w) = \Gamma_p(z, w) \prod_{j \neq p} (1 - Z_j(z)Z_j^*(w)) + \Gamma_q(z, w) \prod_{j \neq q} (1 - Z_j(z)Z_j^*(w))$,

 Γ_p , Γ_q positive kernels;

Greg Knese has a further refinement of this result.

Theorem 4 (Grinshpan, Kalyuzhni-Verbovetski, Vinnikov, Woerdeman).

Suppose $f \in H^{\infty}(\mathbb{D}^d)$. The following are equivalent. (BM) $f \in H_1^{\infty}(\mathbb{D}^d)$; (AD) For any $p < q \in \{1, \dots, d\}$ $1 - f(z) f^*(w) = \Gamma_p(z, w) \prod_{j \neq p} (1 - Z_j(z)Z_j^*(w)) + \Gamma_q(z, w) \prod_{j \neq q} (1 - Z_j(z)Z_j^*(w))$,

 Γ_p , Γ_q positive kernels;

Greg Knese has a further refinement of this result.

The Big Question redux

What about the rest of the realization theorem? Do we really need to initially assume $f \in H^{\infty}(\mathbb{D}^d)$?

Let $\{p_1, \ldots, p_n\}$ be a collection of real polynomials on \mathbb{R}^d . The set $\mathcal{S} = \{x \in \mathbb{R}^d : p_k(x) \ge 0 \text{ for all } k\}$ is called a *(basic) semi-algebraic set*.

Let $\{p_1, \ldots, p_n\}$ be a collection of real polynomials on \mathbb{R}^d . The set $\mathcal{S} = \{x \in \mathbb{R}^d : p_k(x) \ge 0 \text{ for all } k\}$ is called a *(basic) semi-algebraic set*.

What sorts of polynomials are nonnegative on S?

Let $\{p_1, \dots, p_n\}$ be a collection of real polynomials on \mathbb{R}^d . The set $\mathcal{S} = \{x \in \mathbb{R}^d : p_k(x) \ge 0 \text{ for all } k\}$ is called a *(basic) semi-algebraic set*.

What sorts of polynomials are nonnegative on S?

Sums of squares: $\sum_{j} q_j^2$ (sum finite, q_j s polynomials);

Let $\{p_1, \ldots, p_n\}$ be a collection of real polynomials on \mathbb{R}^d . The set $\mathcal{S} = \{x \in \mathbb{R}^d : p_k(x) \ge 0 \text{ for all } k\}$ is called a *(basic) semi-algebraic set*.

What sorts of polynomials are nonnegative on S?

- Sums of squares: $\sum_{j} q_j^2$ (sum finite, q_j s polynomials);
- Quadratic module: $\sum_k p_k \sum_j q_{kj}^2$;

Let $\{p_1, \ldots p_n\}$ be a collection of real polynomials on \mathbb{R}^d . The set $S = \{x \in \mathbb{R}^d : p_k(x) \ge 0 \text{ for all } k\}$ is called a *(basic) semi-algebraic set*.

What sorts of polynomials are nonnegative on S?

- Sums of squares: $\sum_{j} q_j^2$ (sum finite, q_j s polynomials);
- Quadratic module: $\sum_k p_k \sum_j q_{kj}^2$;
- ▶ Preordering: $\sum_{\epsilon} \prod p_k^{\epsilon_k} \sum_j q_{\epsilon_j}^2$, $\epsilon = (\epsilon_1, \ldots, \epsilon_n)$, each ϵ_k either 0 or 1.

Let $\{p_1, \ldots p_n\}$ be a collection of real polynomials on \mathbb{R}^d . The set $\mathcal{S} = \{x \in \mathbb{R}^d : p_k(x) \ge 0 \text{ for all } k\}$ is called a *(basic) semi-algebraic set*.

What sorts of polynomials are nonnegative on S?

- Sums of squares: $\sum_{j} q_j^2$ (sum finite, q_j s polynomials);
- Quadratic module: $\sum_k p_k \sum_j q_{kj}^2$;
- ▶ Preordering: $\sum_{\epsilon} \prod p_k^{\epsilon_k} \sum_j q_{\epsilon_j}^2$, $\epsilon = (\epsilon_1, \ldots, \epsilon_n)$, each ϵ_k either 0 or 1.

Theorem 5 (Schmüdgen's theorem).

Suppose f is a strictly positive polynomial on a compact semialgebraic set S. Then f is in the preordering. Let $\{p_1, \ldots p_n\}$ be a collection of real polynomials on \mathbb{R}^d . The set $S = \{x \in \mathbb{R}^d : p_k(x) \ge 0 \text{ for all } k\}$ is called a *(basic) semi-algebraic set*.

What sorts of polynomials are nonnegative on S?

- Sums of squares: $\sum_{j} q_j^2$ (sum finite, q_j s polynomials);
- Quadratic module: $\sum_k p_k \sum_j q_{kj}^2$;
- Preordering: $\sum_{\epsilon} \prod p_k^{\epsilon_k} \sum_j q_{\epsilon_j}^2$, $\epsilon = (\epsilon_1, \dots, \epsilon_n)$, each ϵ_k either 0 or 1.

Theorem 5 (Schmüdgen's theorem).

Suppose f is a strictly positive polynomial on a compact semialgebraic set S. Then f is in the preordering.

The GK-VVW theorem is a sort of complex version of Schmüdgen's theorem.

Some notation

• Assume we have a finite set of test functions Ψ , $|\Psi| = d$, on a set X.

- Assume we have a finite set of test functions Ψ , $|\Psi| = d$, on a set X.
- ▶ By a *preordering* Λ we will mean a finite subset of \mathbb{N}^d with the partial ordering $n \leq m$ iff $n_i \leq m_i$, $i = 1, \ldots, d$. Write e_i for the tuple which is 1 at the *i*th entry and zero elsewhere. We require that Λ contain all e_i s.

- Assume we have a finite set of test functions Ψ , $|\Psi| = d$, on a set X.
- ▶ By a *preordering* Λ we will mean a finite subset of \mathbb{N}^d with the partial ordering $n \leq m$ iff $n_i \leq m_i$, $i = 1, \ldots, d$. Write e_i for the tuple which is 1 at the *i*th entry and zero elsewhere. We require that Λ contain all e_i s.
- It happens that in what follows there is no loss of generality in assuming if $\lambda \in \Lambda$ and $\lambda' \leq \lambda$, the $\lambda' \in \Lambda$.

- Assume we have a finite set of test functions Ψ , $|\Psi| = d$, on a set X.
- ▶ By a *preordering* Λ we will mean a finite subset of \mathbb{N}^d with the partial ordering $n \leq m$ iff $n_i \leq m_i$, $i = 1, \ldots, d$. Write e_i for the tuple which is 1 at the *i*th entry and zero elsewhere. We require that Λ contain all e_i s.
- ▶ It happens that in what follows there is no loss of generality in assuming if $\lambda \in \Lambda$ and $\lambda' \leq \lambda$, the $\lambda' \in \Lambda$.
- An important case will be that of *ample preorderings*, which have the property that there is some $\lambda_m \in \Lambda$ such that for all $\lambda \in \Lambda$, $\lambda \leq \lambda_m$.

- Assume we have a finite set of test functions Ψ , $|\Psi| = d$, on a set X.
- ▶ By a *preordering* Λ we will mean a finite subset of \mathbb{N}^d with the partial ordering $n \leq m$ iff $n_i \leq m_i$, $i = 1, \ldots, d$. Write e_i for the tuple which is 1 at the *i*th entry and zero elsewhere. We require that Λ contain all e_i s.
- ▶ It happens that in what follows there is no loss of generality in assuming if $\lambda \in \Lambda$ and $\lambda' \leq \lambda$, the $\lambda' \in \Lambda$.
- An important case will be that of *ample preorderings*, which have the property that there is some $\lambda_m \in \Lambda$ such that for all $\lambda \in \Lambda$, $\lambda \leq \lambda_m$.
- For $\lambda \in \Lambda$, define $\psi^{\lambda} := \psi_1^{\lambda_1} \cdots \psi_d^{\lambda_d}$.

- Assume we have a finite set of test functions Ψ , $|\Psi| = d$, on a set X.
- ▶ By a *preordering* Λ we will mean a finite subset of \mathbb{N}^d with the partial ordering $n \leq m$ iff $n_i \leq m_i$, $i = 1, \ldots, d$. Write e_i for the tuple which is 1 at the *i*th entry and zero elsewhere. We require that Λ contain all e_i s.
- ▶ It happens that in what follows there is no loss of generality in assuming if $\lambda \in \Lambda$ and $\lambda' \leq \lambda$, the $\lambda' \in \Lambda$.
- An important case will be that of *ample preorderings*, which have the property that there is some $\lambda_m \in \Lambda$ such that for all $\lambda \in \Lambda$, $\lambda \leq \lambda_m$.
- For $\lambda \in \Lambda$, define $\psi^{\lambda} := \psi_1^{\lambda_1} \cdots \psi_d^{\lambda_d}$.
- The collection of kernels

$$\mathcal{K}_{\Lambda} := \Big\{ k : X \times X \to \mathbb{C} : k \ge 0 \text{ and for each } \lambda \in \Lambda, \Big\}$$

$$\prod_{\lambda \ni \lambda_i \neq 0} ([1] - \psi_i \psi_i^*)^{\lambda_i} * k \ge 0 \bigg\},$$

are termed the admissible kernels. (Can be defined for $\mathcal{L}(\mathcal{H})$ as well).

- Assume we have a finite set of test functions Ψ , $|\Psi| = d$, on a set X.
- ▶ By a *preordering* Λ we will mean a finite subset of \mathbb{N}^d with the partial ordering $n \leq m$ iff $n_i \leq m_i$, $i = 1, \ldots, d$. Write e_i for the tuple which is 1 at the *i*th entry and zero elsewhere. We require that Λ contain all e_i s.
- ▶ It happens that in what follows there is no loss of generality in assuming if $\lambda \in \Lambda$ and $\lambda' \leq \lambda$, the $\lambda' \in \Lambda$.
- An important case will be that of *ample preorderings*, which have the property that there is some $\lambda_m \in \Lambda$ such that for all $\lambda \in \Lambda$, $\lambda \leq \lambda_m$.
- For $\lambda \in \Lambda$, define $\psi^{\lambda} := \psi_1^{\lambda_1} \cdots \psi_d^{\lambda_d}$.
- The collection of kernels

$$\mathcal{K}_{\Lambda} := \Big\{ k : X \times X \to \mathbb{C} : k \ge 0 \text{ and for each } \lambda \in \Lambda, \Big\}$$

$$\prod_{\lambda \ni \lambda_i \neq 0} ([1] - \psi_i \psi_i^*)^{\lambda_i} * k \ge 0 \bigg\},$$

are termed the *admissible kernels*. (Can be defined for $\mathcal{L}(\mathcal{H})$ as well).

► $H^{\infty}(\mathcal{K}_{\Lambda})$ consisting of those functions φ on X for which there is a finite constant $C \ge 0$ such that for all $k \in \mathcal{K}_{\Lambda}$,

$$(C^{2}[1] - \varphi \varphi^{*}) \star k \ge 0,$$

and $\|\varphi\|$ is defined to be the smallest such C.

- Assume we have a finite set of test functions Ψ , $|\Psi| = d$, on a set X.
- ▶ By a *preordering* Λ we will mean a finite subset of \mathbb{N}^d with the partial ordering $n \leq m$ iff $n_i \leq m_i$, $i = 1, \ldots, d$. Write e_i for the tuple which is 1 at the *i*th entry and zero elsewhere. We require that Λ contain all e_i s.
- ▶ It happens that in what follows there is no loss of generality in assuming if $\lambda \in \Lambda$ and $\lambda' \leq \lambda$, the $\lambda' \in \Lambda$.
- An important case will be that of *ample preorderings*, which have the property that there is some $\lambda_m \in \Lambda$ such that for all $\lambda \in \Lambda$, $\lambda \leq \lambda_m$.
- For $\lambda \in \Lambda$, define $\psi^{\lambda} := \psi_1^{\lambda_1} \cdots \psi_d^{\lambda_d}$.
- The collection of kernels

$$\mathcal{K}_{\Lambda} := \Big\{ k : X imes X
ightarrow \mathbb{C} : k \ge 0 ext{ and for each } \lambda \in \Lambda,$$

$$\prod_{\lambda \ni \lambda_i \neq 0} ([1] - \psi_i \psi_i^*)^{\lambda_i} * k \ge 0 \bigg\},$$

are termed the *admissible kernels*. (Can be defined for $\mathcal{L}(\mathcal{H})$ as well).

• $H^{\infty}(\mathcal{K}_{\Lambda})$ consisting of those functions φ on X for which there is a finite constant $C \ge 0$ such that for all $k \in \mathcal{K}_{\Lambda}$,

$$(C^2[1] - \varphi \varphi^*) \star k \ge 0,$$

and $\|\varphi\|$ is defined to be the smallest such C.

• The generalized Schur-Agler class is $H_1^{\infty}(\mathcal{K}_{\Lambda})$, the unit ball of $H^{\infty}(\mathcal{K}_{\Lambda})$.

 \blacktriangleright Define vectors of length 2^{d-1} from the components of any $\psi \in \Lambda$ by

$$\psi_{\lambda}^{+}(x)^{*} = \begin{pmatrix} \vdots \\ \psi_{\lambda_{1}}(x)^{*}\psi_{\lambda_{2}}(x)^{*}\psi_{\lambda_{3}}(x)^{*}\psi_{\lambda_{4}}(x)^{*} \\ \psi_{\lambda_{d-1}}(x)^{*}\psi_{\lambda_{d}}(x)^{*} \\ \vdots \\ \psi_{\lambda_{1}}(x)^{*}\psi_{\lambda_{3}}(x)^{*} \\ \psi_{\lambda_{2}}(x)^{*}\psi_{\lambda_{1}}(x)^{*} \\ \psi_{\lambda_{2}}(x)^{*}\psi_{\lambda_{1}}(x)^{*} \end{pmatrix} \text{ and } \psi_{\lambda}^{-}(x)^{*} = \begin{pmatrix} \vdots \\ \psi_{\lambda_{1}}(x)^{*}\psi_{\lambda_{2}}(x)^{*}\psi_{\lambda_{4}}(x)^{*} \\ \psi_{\lambda_{1}}(x)^{*}\psi_{\lambda_{2}}(x)^{*}\psi_{\lambda_{3}}(x)^{*} \\ \vdots \\ \psi_{\lambda_{2}}(x)^{*} \\ \psi_{\lambda_{1}}(x)^{*} \end{pmatrix}$$

 \blacktriangleright Define vectors of length 2^{d-1} from the components of any $\psi \in \Lambda$ by

$$\psi_{\lambda}^{+}(x)^{*} = \begin{pmatrix} \vdots \\ \psi_{\lambda_{1}}(x)^{*}\psi_{\lambda_{2}}(x)^{*}\psi_{\lambda_{3}}(x)^{*}\psi_{\lambda_{4}}(x)^{*} \\ \psi_{\lambda_{d-1}}(x)^{*}\psi_{\lambda_{d}}(x)^{*} \\ \vdots \\ \psi_{\lambda_{1}}(x)^{*}\psi_{\lambda_{3}}(x)^{*} \\ \psi_{\lambda_{2}}(x)^{*}\psi_{\lambda_{1}}(x)^{*} \\ \psi_{\lambda_{2}}(x)^{*}\psi_{\lambda_{1}}(x)^{*} \end{pmatrix} \text{ and } \psi_{\lambda}^{-}(x)^{*} = \begin{pmatrix} \vdots \\ \psi_{\lambda_{1}}(x)^{*}\psi_{\lambda_{2}}(x)^{*}\psi_{\lambda_{4}}(x)^{*} \\ \psi_{\lambda_{1}}(x)^{*}\psi_{\lambda_{2}}(x)^{*}\psi_{\lambda_{3}}(x)^{*} \\ \vdots \\ \psi_{\lambda_{2}}(x)^{*} \\ \psi_{\lambda_{1}}(x)^{*} \end{pmatrix}$$

 $\blacktriangleright \ \, {\rm For} \ \lambda \in \Lambda,$

$$\prod_{\lambda_i \in \lambda} ([1] - \psi_{\lambda_i}^* \psi_{\lambda_i})(x, y) = \psi_{\lambda}^+(x) \psi_{\lambda}^+(y)^* - \psi_{\lambda}^-(x) \psi_{\lambda}^-(y)^*$$

 \blacktriangleright Define vectors of length 2^{d-1} from the components of any $\psi \in \Lambda$ by

$$\psi_{\lambda}^{+}(x)^{*} = \begin{pmatrix} \vdots \\ \psi_{\lambda_{1}}(x)^{*}\psi_{\lambda_{2}}(x)^{*}\psi_{\lambda_{3}}(x)^{*}\psi_{\lambda_{4}}(x)^{*} \\ \psi_{\lambda_{d-1}}(x)^{*}\psi_{\lambda_{d}}(x)^{*} \\ \vdots \\ \psi_{\lambda_{1}}(x)^{*}\psi_{\lambda_{3}}(x)^{*} \\ \psi_{\lambda_{2}}(x)^{*}\psi_{\lambda_{1}}(x)^{*} \end{pmatrix} \text{ and } \psi_{\lambda}^{-}(x)^{*} = \begin{pmatrix} \vdots \\ \psi_{\lambda_{1}}(x)^{*}\psi_{\lambda_{2}}(x)^{*}\psi_{\lambda_{4}}(x)^{*} \\ \psi_{\lambda_{1}}(x)^{*}\psi_{\lambda_{2}}(x)^{*}\psi_{\lambda_{3}}(x)^{*} \\ \vdots \\ \psi_{\lambda_{2}}(x)^{*} \\ \psi_{\lambda_{1}}(x)^{*} \end{pmatrix}$$

• For $\lambda \in \Lambda$,

$$\prod_{\lambda_i \in \lambda} ([1] - \psi_{\lambda_i}^* \psi_{\lambda_i})(x, y) = \psi_{\lambda}^+(x)\psi_{\lambda}^+(y)^* - \psi_{\lambda}^-(x)\psi_{\lambda}^-(y)^*$$

▶ By Douglas' lemma, for each $\lambda \in \Lambda$ there exists σ_{λ} such that $\psi_{\lambda}^{-}(x) = \psi_{\lambda}^{+}(x)\sigma_{\lambda}(x)$. In fact since $\psi_{\lambda}^{+}(x)$ is right invertible, we can set $\sigma_{\lambda}(x) = \psi_{\lambda}^{+}(x)^{-1}\psi_{\lambda}^{-}(x)$.

• Define vectors of length 2^{d-1} from the components of any $\psi \in \Lambda$ by

$$\psi_{\lambda}^{+}(x)^{*} = \begin{pmatrix} \vdots \\ \psi_{\lambda_{1}}(x)^{*}\psi_{\lambda_{2}}(x)^{*}\psi_{\lambda_{3}}(x)^{*}\psi_{\lambda_{4}}(x)^{*} \\ \psi_{\lambda_{d-1}}(x)^{*}\psi_{\lambda_{d}}(x)^{*} \\ \vdots \\ \psi_{\lambda_{1}}(x)^{*}\psi_{\lambda_{3}}(x)^{*} \\ \psi_{\lambda_{2}}(x)^{*}\psi_{\lambda_{1}}(x)^{*} \end{pmatrix} \text{ and } \psi_{\lambda}^{-}(x)^{*} = \begin{pmatrix} \vdots \\ \psi_{\lambda_{1}}(x)^{*}\psi_{\lambda_{2}}(x)^{*}\psi_{\lambda_{4}}(x)^{*} \\ \psi_{\lambda_{1}}(x)^{*}\psi_{\lambda_{2}}(x)^{*}\psi_{\lambda_{3}}(x)^{*} \\ \vdots \\ \psi_{\lambda_{2}}(x)^{*} \\ \psi_{\lambda_{1}}(x)^{*} \end{pmatrix}$$

• For $\lambda \in \Lambda$,

$$\prod_{\lambda_i \in \lambda} ([1] - \psi_{\lambda_i}^* \psi_{\lambda_i})(x, y) = \psi_{\lambda}^+(x)\psi_{\lambda}^+(y)^* - \psi_{\lambda}^-(x)\psi_{\lambda}^-(y)^*$$

- ▶ By Douglas' lemma, for each $\lambda \in \Lambda$ there exists σ_{λ} such that $\psi_{\lambda}^{-}(x) = \psi_{\lambda}^{+}(x)\sigma_{\lambda}(x)$. In fact since $\psi_{\lambda}^{+}(x)$ is right invertible, we can set $\sigma_{\lambda}(x) = \psi_{\lambda}^{+}(x)^{-1}\psi_{\lambda}^{-}(x)$.
- We refer to the functions σ_{λ} , $\lambda \in \Lambda$, as the *auxiliary test functions*.

$$\begin{pmatrix} \psi_{\lambda}^{+}(x)(1_{n} - \sigma_{\lambda}(x)\sigma_{\lambda}(y)^{*})k(x,y)\psi_{\lambda}^{+}(y)^{*} \end{pmatrix}$$

= $\left(\prod_{\lambda_{i} \in \lambda} ([1] - \psi_{i}\psi_{i}^{*})^{\lambda_{i}} * k \right)(x,y) \ge 0.$

$$\begin{pmatrix} \psi_{\lambda}^{+}(x)(1_{n} - \sigma_{\lambda}(x)\sigma_{\lambda}(y)^{*})k(x,y)\psi_{\lambda}^{+}(y)^{*} \end{pmatrix}$$

= $\left(\prod_{\lambda_{i} \in \lambda} ([1] - \psi_{i}\psi_{i}^{*})^{\lambda_{i}} * k \right)(x,y) \ge 0.$

• However we do not necessarily have $([1] - \sigma_\lambda \sigma_\lambda^*) * k \ge 0!$

$$\left(\psi_{\lambda}^{+}(x)(1_{n}-\sigma_{\lambda}(x)\sigma_{\lambda}(y)^{*})k(x,y)\psi_{\lambda}^{+}(y)^{*}\right)$$
$$=\left(\prod_{\lambda_{i}\in\lambda}([1]-\psi_{i}\psi_{i}^{*})^{\lambda_{i}}*k\right)(x,y)\geq0.$$

- However we do not necessarily have $([1] \sigma_\lambda \sigma_\lambda^*) * k \ge 0!$
- This can be rectified in the ample case.

$$(\psi_{\lambda}^{+}(x)(1_{n} - \sigma_{\lambda}(x)\sigma_{\lambda}(y)^{*})k(x,y)\psi_{\lambda}^{+}(y)^{*})$$

= $(\prod_{\lambda_{i}\in\lambda}([1] - \psi_{i}\psi_{i}^{*})^{\lambda_{i}} * k) (x,y) \ge 0.$

- However we do not necessarily have ([1] − σ_λσ^{*}_λ) * k ≥ 0!
- This can be rectified in the ample case.

Lemma 6.

If Λ is ample, for each $\lambda \in \Lambda$ we can extend σ_{λ} to an $M(\mathbb{C}^{2^{|\lambda|-1}})$ valued function such that $([1] - \sigma_{\lambda}\sigma_{\lambda}^*) * k \geq 0$.

$$(\psi_{\lambda}^{+}(x)(1_{n} - \sigma_{\lambda}(x)\sigma_{\lambda}(y)^{*})k(x,y)\psi_{\lambda}^{+}(y)^{*})$$

= $(\prod_{\lambda_{i}\in\lambda}([1] - \psi_{i}\psi_{i}^{*})^{\lambda_{i}} * k) (x,y) \ge 0.$

- However we do not necessarily have ([1] − σ_λσ^{*}_λ) * k ≥ 0!
- This can be rectified in the ample case.

Lemma 6.

If Λ is ample, for each $\lambda \in \Lambda$ we can extend σ_{λ} to an $M(\mathbb{C}^{2^{|\lambda|-1}})$ valued function such that $([1] - \sigma_{\lambda}\sigma_{\lambda}^*) * k \geq 0$.

In particular, each auxiliary test function is in $H^\infty(\Lambda, M(\mathbb{C}^n))$ for an appropriate n.

Let π be a unital representation of $H^{\infty}(\mathcal{K}_{\Lambda})$. We call π a *Brehmer representation* if for all $\lambda \in \Lambda$,

$$\prod_{\lambda \ni \lambda_i \neq 0} (1 - \pi(\psi_i) \pi(\psi_i)^*)^{\lambda_i} \ge 0.$$

Let π be a unital representation of $H^{\infty}(\mathcal{K}_{\Lambda})$. We call π a *Brehmer representation* if for all $\lambda \in \Lambda$,

$$\prod_{\lambda \ni \lambda_i \neq 0} (1 - \pi(\psi_i) \pi(\psi_i)^*)^{\lambda_i} \ge 0.$$

A representation π of $H^{\infty}(\mathcal{K}_{\Lambda})$ is a strict Brehmer representation if the inequalities are strict. It is a norm/strongly/weakly continuous Brehmer representation if it is a Brehmer representation and whenever a bounded net (φ_{α}) converges pointwise in norm to φ (in other words, $\sup_{\alpha} \|\varphi_{\alpha}\|_{\infty} < \infty$ and for each $x \in X$, $\|\varphi_{\alpha}(x) - \varphi(x)\| \to 0$), $\pi(\varphi_{\alpha})$ converges in norm/strongly/weakly to $\pi(\varphi)$.

Theorem 7 (Realization theorem I).

The following are equivalent:

- 1. $\varphi \in H^{\infty}(\mathcal{K}_{\Lambda,\mathcal{H}})$ and $\|\varphi\| \leq 1$.
- 2. φ has an Agler decomposition; that is, there is a completely positive kernel $\Gamma: X \times X \to \mathcal{L}(C_b(\Lambda), \mathcal{L}(\mathcal{H}))$ such that for all $x, y \in X$,

$$1 - \varphi(x)\varphi(y)^* = \sum_{\lambda} \Gamma_{\lambda}(x,y) \left(\psi_{\lambda}^+(x)\psi_{\lambda}^+(y)^* - \psi_{\lambda}^-(x)\psi_{\lambda}^-(y)^* \right) \otimes 1_{\mathcal{L}(\mathcal{H})},$$

for some positive kernels Γ_{λ} .

Furthermore, in this situation, φ has a transfer function representation: there exists a unitary colligation Σ such that

$$\varphi = W_{\Sigma}(x) := D + CS(x)(1 - AS(x))^{-1}B,$$

where $S(x) = \sum_{\lambda} \sigma_{\lambda} \otimes P_{\lambda}$.

Theorem 7 (Realization theorem I).

The following are equivalent:

- 1. $\varphi \in H^{\infty}(\mathcal{K}_{\Lambda,\mathcal{H}})$ and $\|\varphi\| \leq 1$.
- 2. φ has an Agler decomposition; that is, there is a completely positive kernel $\Gamma: X \times X \to \mathcal{L}(C_b(\Lambda), \mathcal{L}(\mathcal{H}))$ such that for all $x, y \in X$,

$$1 - \varphi(x)\varphi(y)^* = \sum_{\lambda} \Gamma_{\lambda}(x,y) \left(\psi_{\lambda}^+(x)\psi_{\lambda}^+(y)^* - \psi_{\lambda}^-(x)\psi_{\lambda}^-(y)^* \right) \otimes 1_{\mathcal{L}(\mathcal{H})},$$

for some positive kernels Γ_{λ} .

Furthermore, in this situation, φ has a transfer function representation: there exists a unitary colligation Σ such that

$$\varphi = W_{\Sigma}(x) := D + CS(x)(1 - AS(x))^{-1}B,$$

where $S(x) = \sum_{\lambda} \sigma_{\lambda} \otimes P_{\lambda}$.

Note the subtle difference between this and the usual realisation theorem: Given a unitary colligation Σ , there is no guarantee that $W_{\Sigma} \in H^{\infty}(\mathcal{K}_{\Lambda})$.

Theorem 7 (Realization theorem I).

The following are equivalent:

- 1. $\varphi \in H^{\infty}(\mathcal{K}_{\Lambda,\mathcal{H}})$ and $\|\varphi\| \leq 1$.
- 2. φ has an Agler decomposition; that is, there is a completely positive kernel $\Gamma: X \times X \to \mathcal{L}(C_b(\Lambda), \mathcal{L}(\mathcal{H}))$ such that for all $x, y \in X$,

$$1 - \varphi(x)\varphi(y)^* = \sum_{\lambda} \Gamma_{\lambda}(x,y) \left(\psi_{\lambda}^+(x)\psi_{\lambda}^+(y)^* - \psi_{\lambda}^-(x)\psi_{\lambda}^-(y)^* \right) \otimes 1_{\mathcal{L}(\mathcal{H})},$$

for some positive kernels Γ_{λ} .

Furthermore, in this situation, φ has a transfer function representation: there exists a unitary colligation Σ such that

$$\varphi = W_{\Sigma}(x) := D + CS(x)(1 - AS(x))^{-1}B,$$

where $S(x) = \sum_{\lambda} \sigma_{\lambda} \otimes P_{\lambda}$.

Note the subtle difference between this and the usual realisation theorem: Given a unitary colligation Σ , there is no guarantee that $W_{\Sigma} \in H^{\infty}(\mathcal{K}_{\Lambda})$.

This makes it difficult to do interpolation!

Theorem 8 (Realization theorem II).

Let Λ be an ample preordering. The following are equivalent:

- 1. $\varphi \in H^{\infty}(\mathcal{K}_{\Lambda,\mathcal{H}})$ and $\|\varphi\| \leq 1$.
- 2. φ has an Agler decomposition; that is, there is a completely positive kernel $\Gamma: X \times X \to \mathcal{L}(C_b(\Lambda), \mathcal{L}(\mathcal{H}))$ such that for all $x, y \in X$,

$$1 - \varphi(x)\varphi(y)^* = \sum_{\lambda} \Gamma_{\lambda}(x,y) \left(\psi_{\lambda}^+(x)\psi_{\lambda}^+(y)^* - \psi_{\lambda}^-(x)\psi_{\lambda}^-(y)^* \right) \otimes 1_{\mathcal{L}(\mathcal{H})},$$

for some positive kernels Γ_{λ} .

3. φ has a transfer function representation

$$\varphi = W_{\Sigma}(x) := D + CS(x)(1 - AS(x))^{-1}B,$$

Furthermore, in this case every weakly continuous Brehmer representation is completely contractive.

The polydisk

Theorem 9 (Realization theorem III).

- Let $X = \mathbb{D}^d$, $\Psi = \{z_j\}$, $\Lambda = \{\lambda \leq (1, ..., 1)\}$. The following are equivalent: 1. $\varphi \in H^{\infty}(\mathbb{D}^d)$ and $\|\varphi\|_{\infty} \leq 1$.
- 2. φ has an Agler decomposition; that is, there is a completely positive kernel $\Gamma: X \times X \to \mathcal{L}(C_b(\Lambda), \mathcal{L}(\mathcal{H}))$ such that for all $x, y \in X$,

$$1 - \varphi(x)\varphi(y)^* = \sum_{\lambda} \Gamma_{\lambda}(x,y) \left(\psi_{\lambda}^+(x)\psi_{\lambda}^+(y)^* - \psi_{\lambda}^-(x)\psi_{\lambda}^-(y)^* \right) \otimes 1_{\mathcal{L}(\mathcal{H})},$$

for some positive kernels Γ_{λ} .

3. φ has a transfer function representation

$$\varphi = W_{\Sigma}(x) := D + CS(x)(1 - AS(x))^{-1}B,$$

Furthermore, in this case every weakly continuous Brehmer representation is completely contractive.

Corollary 10.

Any weakly continuous $2^{d-1}\text{-contractive representation of }H^\infty(\mathbb{D}^d)$ is completely contractive.

Corollary 10.

Any weakly continuous $2^{d-1}\text{-contractive representation of }H^\infty(\mathbb{D}^d)$ is completely contractive.

With a bit more work, we can replace 2^{d-1} by 2^{d-2} . In particular then, any strictly 2-contractive representation of $H^{\infty}(\mathbb{D}^3)$ is completely contractive.

Theorem 11 (Realization theorem II').

Let $\Psi = \{\psi_1, \psi_2\}$ on \mathbb{C}^d , $\Lambda = \{\lambda \leq (1, 1)\}$. The following are equivalent:

- 1. $\varphi \in H^{\infty}(\mathcal{K}_{\Lambda,\mathcal{H}})$ and $\|\varphi\| \leq 1$.
- 2. φ has an Agler decomposition; that is, there is a completely positive kernel $\Gamma: X \times X \to \mathcal{L}(C_b(\Lambda), \mathcal{L}(\mathcal{H}))$ such that for all $x, y \in X$,

$$1 - \varphi(x)\varphi(y)^* = \sum_{\lambda} \Gamma_i(x, y) \left(1 - \psi_i(x)\psi_i(y)^*\right) \otimes 1_{\mathcal{L}(\mathcal{H})},$$

for some positive kernels Γ_{λ} .

3. φ has a transfer function representation

$$\varphi = W_{\Sigma}(x) := D + CS(x)(1 - AS(x))^{-1}B,$$

where now $S(x) = \psi_1 P_1 \oplus \psi_2 P_2$.

Furthermore, in this case any weakly continuous representation π for which $||\pi(\psi_i)|| \leq 1$, i = 1, 2, is completely contractive.