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Miroslav Englǐs (Prague)

Abstract. We give criteria for the membership of Toeplitz operators
and of products of Hankel operators, with symbols of a certain type, in
Schatten ideals and in the Dixmier class, and formulas for their Dixmier
trace, on a variety of weighted Segal-Bargmann-Fock spaces on the com-
plex plane.
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Hardy space operators

T = {z ∈ C : |z| = 1}

Hardy space: L2(T) ⊃ H2 = {f : f̂(n) = 0 ∀n < 0} = L2
hol(T),

f̂(n) :=
1
2π

∫ 1

0

f(eiθ) e−niθ dθ.

Szegö projection: S : L2(T) → H2.

Toeplitz operator with symbol f ∈ L∞(T):

THardy
f : H2 → H2, g 7→ S(fg)

Hankel operator:

HHardy
f : H2 → L2 ªH2 = H2

0 , g 7→ (I − S)(fg).
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Bergman space operators

D = {z ∈ C : |z| < 1}

Bergman space: L2(D) ⊃ A2 = {f : f holomorphic on D}

Bergman projection: P : L2(D) → A2

Toeplitz operator with symbol f ∈ L∞(D):

Tf : A2 → A2, g 7→ P (fg);

Hankel operator:

Hf : A2 → L2(D)ªA2, g 7→ (I − P )(fg).
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Similarly — on the ball Bn ⊂ Cn, or any Ω ⊂ Cn:

Bergman space (wrt the Lebesgue measure)

Hardy space (Poisson extension holomorphic; wrt surface measure)
[bigger orthocomplement]

Szegö/Bergman projection, Toeplitz ops., Hankel ops.
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Hf in Schatten classes

Hankel operators on H2(T) [Peller 1982] [Semmes 1984]:
for f holomorphic, Hf ∈ Sp ⇐⇒ f ∈ Bp, the p-th Besov space:

∫

D

|f (k)(z)|p (1− |z|2)kp−2 dm(z) < ∞,

for some (⇔ any) k > 1/p. (0 < p < ∞) (Trivial for f∈C∞(T).)

Hankel operators on A2(D) [Arazy-Fisher-Janson-Peetre 1988]:
for f holomorphic, Hf ∈ Sp, 1 < p < ∞, ⇐⇒ f ∈ Bp;

Hf ∈ Sp, p ≤ 1, ⇐⇒ Hf = 0.

. . . Cut-off at p = 1. (Never S1 even for f∈C∞(D).)
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Hankel operators on A2(Bn), n > 1 [Arazy-Fisher-Peetre 1988]:
for f holomorphic, Hf ∈ Sp, 2n < p < ∞, ⇐⇒ f ∈ Bp;

Hf ∈ Sp, p ≤ 2n, ⇐⇒ Hf = 0.

(cut-off at p = 2n)

Same result — for any Ω smoothly bounded strictly pseudoconvex
in Cn, n ≥ 2. [Li-Luecking 1995]

At the cutoff: Dixmier ideal and Dixmier trace.
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The Dixmier ideal

Recall: a compact operator T on a Hilbert space belongs to Sp iff∑

j

sj(T )p < ∞,

where s0(T ) ≥ s1(T ) ≥ s2(T ) ≥ . . . are the eigenvalues of (T ∗T )1/2

(counting multiplicities).

Schatten ideals: T ∈ Sp ⇐⇒ {sj(T )} ∈ `p (0 < p < ∞);

T ∈ Sp,∞ ⇐⇒ sj(T ) = O(j−1/p) (0 < p < ∞).

(S1 — trace class).

Dixmier ideal SDixm: consists of all T such that
N∑

j=1

sj(T ) = O(log N).

Norm: ‖T‖Dixm := sup
N≥2

1
log N

N∑

j=0

sj(T ).

Inclusions: S1 ⊂ S1,∞ ⊂ SDixm ⊂ Sp, ∀p > 1.
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Dixmier trace

ω : l∞ → C a Banach limit
i.e. ω ∈ (l∞)∗ of norm 1 extending lim ∈ c∗ on c ⊂ l∞

ω is scaling invariant if ω(x1, x1, x2, x2, . . . ) = ω(x1, x2, . . . )

Dixmier trace of A ∈ SDixm, A ≥ 0:

Trω(A) := ω
( 1

1 + log n

n∑

j=1

sj(A)
)
.

One has Trω(A + B) = Trω(A) + Trω(B) if ω scaling invariant; hence,
makes sense to set

Trω(A) = Trω(A+)− Trω(A−) for A = A+ −A− = A∗ ∈ SDixm,

Trω(A) = Trω

(A + A∗

2

)
+ i Trω

(A−A∗

2i

)
for arbitrary A ∈ SDixm.

A is measurable if Trω(A) is the same for all ω.
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Properties of Trω:

• Cyclicity: Trω(AB) = Trω(BA) A ∈ SDixm, B bounded.

• Nontrivial: Trω(A) = 0 if A trace-class.

• for T ≥ 0

Trω(T ) = lim
N→∞

1
log N

N∑

j=0

sj(T )

if the limit exists.

[Connes – NG book 1994]
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We had the cut-off phenomena: for f holomorphic on the disc,

Hf ∈ Sp ⇐⇒
{

f ∈ Bp, 1 < p < ∞,

f = const., 0 < p ≤ 1,

and f holomorphic on the ball or on s-pscvx Ω ⊂ Cn s-pscvx, n ≥ 2,

Hf ∈ Sp ⇐⇒
{

f ∈ Bp, 2n < p < ∞,

f = const., 0 < p ≤ 2n.

Question: When is

Hf ∈ SDixm on D,

H∗
f1

Hf2 . . . H∗
f2n−1

Hf2n ∈ SDixm on Bn, n ≥ 2,

or on Ω ⊂ Cn, n ≥ 2, nice?

What are the corresponding Dixmier traces

Trω(|Hf |), Trω(H∗
f1

Hf2 . . .H∗
f2n−1

Hf2n
) ?
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Known previously:

• for D [Arazy-Fisher-Peetre 1988]

f ∈ B1 =⇒ Hf ∈ SDixm,

but not conversely.

• 0 6= Hf ∈ I, a unitary ideal =⇒ SDixm ⊂ I.

• Nothing known about Trω(|Hf |).

• Nothing known for Bn, n ≥ 2, or strictly-pseudoconvex.
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Results — disc

Theorem. [R. Rochberg, ME] If f ∈ C∞(D), then

Trω(|Hf |) =
∫

T

|∂f | dσ,

where dσ = normalized arc-length.

In particular: Hf measurable. (Nontrivial even for smooth f .)

Theorem. [RR, ME] For f holomorphic on D, TFAE:

(1) f ′ ∈ H1;

(2) Hf ∈ S1,∞;

(3) Hf ∈ SDixm.

In that case |Hf | is measurable and

Trω(|Hf |) =
∫

T

|f ′| dσ = ‖f ′‖H1 .
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Results — several complex variables

Theorem. Ω ⊂ Cn smoothly bounded strictly pseudoconvex. Then for
any 2n functions f1, g1, . . . , fn, gn ∈ C∞(Ω),

H∗
f1

Hg1 . . .H∗
fn

Hgn
=: H ∈ SDixm

and

Trω(H) =
1

n!(2π)n

∫

∂Ω

n∏

j=1

L(∂bgj , ∂bfj) dµ,

where
dµ := 1

2in (∂r − ∂r) ∧ (∂∂r)n−1.

Here L is the dual Levi form on T ′′∗ (the dual of the anti-holomorphic
complex tangent space on ∂Ω), and r is a defining function for Ω.

In particular, H is measurable.
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Results — the Fock space

Fock (Segal-Bargmann) space:

Fγ := {f ∈ L2(Cn, e−γ|z|2( γ
π )n dz) : f entire}, γ > 0. (γ = 1

2 )

Toeplitz and Hankel operators:

Tf : u 7→ P (fu), Hf : u 7→ (I − P )(fu),

where f ∈ L∞(Cn) and P : L2 → Fγ is the OG projection.

Analogue of C∞ on the closure: f ∈ A def⇐⇒

f(z) ≈
∞∑

j=0

fj(z) as |z| → +∞,

where fj(z) is homogeneous of degree −j, i.e. fj(tz) = t−jfj(z) ∀t > 0.
(Symbol classes for psdo’s.)
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Theorem. For f, g ∈ A and ζ ∈ S2n−1, denote

Q(f, g) := lim
r→+∞

r2
n∑

j=1

∂jf(rζ) · ∂jg(rζ)

(the limits exists thanks to the definition ofA, and in fact we may replace
f, g by their top-degree components f0, g0).

Then for any f1, g1, . . . , fn, gn ∈ A, the product

H∗
f1

Hg1 . . . H∗
fn

Hgn =: H

belongs to SDixm, is measurable, and

Trω(H) =
1
n!

∫

S2n−1
Q(f1, g1) . . . Q(fn, gn) dσ

where dσ is the normalized surface measure on S2n−1.
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Proof. Weyl operator with symbol a = a(x, ξ) on L2(Rn):

Waf(x) =
( 1

2π

)n
∫

Rn

∫

Rn

a
(x + y

2
, ξ

)
e−i〈x−y,ξ〉 f(y) dy dξ.

Converges if a ∈ S(R2n); extends in standard way to a ∈ S ′(R2n).
Special cases: Wa(x) = Ma; Wξα = iα∂α.

Bargmann transform: isometry β : L2(Rn) → F−1/2,

βf(z) :=
1

(4π3)n/4

∫

Rn

f(x)ex·z−x·x/2−z·z/4 dx.

(Extends also to general Fγ via dilations z 7→ √
γz.)

Fact: Relationship to Toeplitz operators:
β∗Taβ = WEa

where a(x, ξ) is also viewed as the function a(z) of z = x+ iξ ∈ Cn, and

Ea(z) =
(2γ

π

)n
∫

Cn

a(w)e−2γ|z−w|2 dw = e∆/8γa(z)

is the heat solution at time t = 1
8γ .

Reduces the problem to deciding when WE(fg) −WEfWEg ∈ S2n,∞.
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Using the interplay between Wa and Ta = WEa = Wa+LOT:

Theorem.

(a) Let p > 1 and a ∈ Am, m < −2n/p. Then Wa, Ta ∈ Sp.
(b) Let p > 1 and a ∈ Am, m ≤ −2n/p. Then Wa, Ta ∈ Sp,∞.
(c) If a ∈ A0, then Wa is bounded.

(The last usually proved using Calderon-Vaillancourt — we are able to
prove it using only that Tf is bounded for f bounded.)

Known for Wa; folk lore for Toeplitz.

Here Am denotes the class of f with homogeneous expansion

f(z) ≈ |z|m
∞∑

j=0

fj(z) as |z| → +∞.
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Rest of this talk: Generalizations to weighted Fock spaces.
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Notation:
Fw := {f ∈ L2(Cn, w) : f is holomorphic}.

Here w is (positive continuous) assumed to be such that

|z|kw(z) is integrable for all k ≥ 0,

so that polynomials belong to Fw. In all cases we will consider here,
they will also be dense in Fw.

Example:
Fm := Fw for w(z) = e−|z|

2m

,

“higher-order Fock” spaces. ¤
Toeplitz and Hankel operators on Fw:

Tf = P+Mf , Hf = P−Mf ,

where P+ : L2(Cn, w) → Fw is the orthogonal projection, P− = I −P+,
and Mf : u 7→ fu is the operator of “multiplication by f”.

Question: Membership in Sp, SDixm, Trω.

Will work on C; the case of Cn involves just more technicalities.
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Related work:

• [Holland, Rochberg 2001] — radial weights, estimates for Bergman
kernel, Hankel forms

• [Bommier-Hato, Youssfi 2007] — Hf , f holomorphic, on Fm

• [Seip, Youssfi 2012] — Sp criteria for Hf , f holomorphic, similar
(finer) estimates for Bergman kernel

• [Lin, Rochberg 1995], [Constantin, Ortega-Cerda 2011] (for ∂), . . .

Nothing known for SDixm, Trω.
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Results

Theorem A. Let

w(z) = e−|z|
2m

, m > 0.

Assume that f, g ∈ L∞(C) have the form

f(z) =
q∑

j=0

|z|−jfj

( z

|z|
)

+ O
( 1
|z|q+1

)
as |z| → +∞

and similarly for g, where q +1 > m and fj , gj, j = 0, 1, . . . , q, are some
functions in C∞(T).
Extend f0 to C \ {0} by f0(z) := f0

( z

|z|
)

and similarly for g0.
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Then Hf , Hg belong to S2,∞, the operator H∗
f
Hg belongs to the Dixmier

class, is measurable, the limit

Q(f, g)(eiθ) := lim
r→+∞

r2∂f0(reiθ)∂g0(reiθ)

exists for any eiθ ∈ T, and

Trω(H∗
f
Hg) =

1
2πm

∫ 2π

0

Q(f, g)(eiθ) dθ.

Also an analogous result for Tf .

The hypothesis q + 1 > m is essential: for f(z) = ei|z|2 , Hf is not even
compact.
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Theorem B. Let
w(z) = ρ(z)|z|qe−|z|2

where q ∈ R and

ρ(z) is bounded and bounded away from 0 as z →∞.

Then
(i) f ∈ As, s < 0 =⇒ Tf ∈ S−2/s,∞.
(ii) f ∈ As, s < −2/p =⇒ Tf ∈ Sp (p ≥ 1).
(iii) f, g ∈ A0 =⇒ H∗

f Hg ∈ SDixm and Trω is given by the same
formula as for w(z) = e−|z|

2
.

Proof of Theorem A — elementary methods.

Proof of Theorem B — reduction to Weyl calculus.
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Fact C. Let
w(z) = e−|z|

2m

, m > 0.

Then there exists a natural “Bargman transform”

βm : L2(R) → Fm

such that
β∗mTfβm = WEmf

where Em is a certain ΨDO on C.

We originally hoped to use this for giving a proof of Theorem A also by
reduction to the Weyl calculus.
However, Em is too complicated.
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Proof of Theorem A

For convenience, introduce the notation (s > 0)

I−s = S1/s,∞ = {T : sj(T ) = O(j−s) as j →∞}.
Then I−s is a vector space, with quasi-norm

‖T‖−s := sup
j

(j + 1)ssj(T )

satisfying
‖A + B‖−s ≤ 2s(‖A‖−s + ‖B‖−s),

‖AB‖−s−t ≤ 2s+t‖A‖−s‖B‖−t.

In particular, I−s · I−t ⊂ I−s−t.

Let also χ denote the characteristic function of the extrior disc |z| ≥ 1.

Then the functions
|z|sχ(z)

are defined for any s ∈ R (we avoid the singularity z = 0 for negative s).
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Observation 1: T|z|sχ ∈ Is/2m.

Proof. For any radial function w on C, denote by

ck(w) :=
∫

C

|z|2kw(z) dz

its moments. Then if φ is another radial function, the Toeplitz operator
Tφ on Fw is diagonalized by the monomial basis {zk}:

Tφ : zk 7−→ ck(φw)
ck(w)

zk.

Applying this to w(z) = e−|z|
2m

, φ(z) = |z|sχ(z) gives the result, since

ck(w) =
π

m
Γ
(m + 1

π

)
, ck(φw) ∼ ck+s/2(w),

and
ck+s/2(w)

ck(w)
∼ Γ(k+ s

2+1

m )
Γ(k+1

m )
∼ ks/2m

by Stirling’s formula. ¤
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Observation 2: Tf ∈ Is/2m if f(z) = O(|z|s) as z →∞.

Proof. Write
Tf = T(1−χ)f + T|z|sχg

with g bounded. Then

T|z|sχg = P+M|z|sχgP+ = (M|z|s/2χP+)∗Mg(M|z|s/2χP+)

while
(M|z|s/2χP+)∗(M|z|s/2χP+) = T|z|sχ.

By previous observation, the last product belongs to Is/2m, hence
(M|z|s/2χP+) ∈ Is/4m and T|z|sχg ∈ Is/2m.

A similar argument shows that T(1−χ)f in fact belongs to all Is, s < 0.
So Tf ∈ Is/2m. ¤
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Using the formula
Tfg − TfTg = H∗

f
Hg,

similar argument yields also the following two observations.

Observation 3: Hf ∈ Is/2m if f(z) = O(|z|s) as z →∞.

Observation 4: For f ∈ L∞(C) and s ≤ 0,

H|z|sχ, Tf |z|sχ − TfT|z|sχ, Tf |z|sχ − T|z|sχTf ∈ Is/2m−1/2.

Remark. No longer true for H|z|sχ replaced by Hf , f = O(|z|s).
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Proof of Theorem A

Theorem A. Let

w(z) = e−|z|
2m

, m > 0.

Assume that f, g ∈ L∞(C) have the form

f(z) =
q∑

j=0

|z|−jfj

( z

|z|
)

+ O
( 1
|z|q+1

)
as |z| → +∞

and similarly for g, where q + 1 > m and fj , gj ∈ C∞(T).

Extend f0 to C \ {0} by f0(z) := f0

(
z
|z|

)
and similarly for g0.

Then Hf , Hg ∈ I−1/2, H∗
f
Hg ∈ SDixm belongs to the Dixmier class,

is measurable, the limit

Q(f, g)(eiθ) := lim
r→+∞

r2∂f0(reiθ)∂g0(reiθ)

exists for any eiθ ∈ T, and

Trω(H∗
f
Hg) =

1
2πm

∫ 2π

0

Q(f, g)(eiθ) dθ.
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Step 1:

Extend fj , gj also by 0-homogeneity, and denote by fq+1, gq+1 the re-
mainder terms.

First of all, it is enough to prove the theorem for f = f0, g = g0. Indeed,
if we know that

Hfj
,Hgj

∈ I−1/2,

then from the observations above we easily get that

H∗
f
Hg −H∗

f0
Hg0 ∈ S1.

Thus H∗
f
Hg also belongs to SDixm and has the same Trω as H∗

f0
Hg0 .

From now on, we thus assume that f, g are homogeneous of degree 0
on C.
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Step 2: Let
f(eiθ) =

∑

j∈Z

f̂jej , ej(eiθ) := ejiθ,

be the Fourier expansion of f . Since f ∈ C∞(T) by hypothesis, we have

|f̂j | ≤ Cf

(j2 + 1)2

by Cauchy estimates, so the series converges uniformly. Similarly for g.
Hence

Q(f, g) =
∑

j,l

f̂j ĝlQ(ej , el).
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If we show that

(*) ‖H∗
ej

Hel
‖Dixm ≤ Cm|jl|

for some constant Cm depending only on m, then also

∑

j,l

‖f̂j ĝlH
∗
ej

Hel
‖Dixm ≤ CfCgCm

∑

j,l

|jl|
(j2 + 1)2(l2 + 1)2

< ∞,

implying that H∗
f
Hg ∈ SDixm and

Trω(H∗
f
Hg) =

∑

j,l

f̂j ĝl Trω(H∗
ej

Hel
).

It is thus enough to prove Theorem A for f = ej , g = el, j, l ∈ Z,
together with the norm estimate (*).

We start with the latter.
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Step 3: From the general inequality

‖AB‖Dixm ≤ ‖AB‖−1 ≤ 2‖A‖−1/2‖B‖−1/2 = 2
√
‖A∗A‖−1‖B∗B‖−1

we see that it is enough to prove (*) for j + l = 0, i.e.

‖H∗
el

Hel
‖−1 ≤ Cml2.

Now the last operator is diagonalized by the standard monomial basis:
H∗

el
Hel

zk = dkzk, where

dk =





1 k + l < 0,

1−
c2
k+l/2

ckck+l
k + l ≥ 0.

This reduces (*) to showing that

x
(
1− Γ(x + a

2 )2

Γ(x)Γ(x + a)

)
≤ Cma2 ∀a ≥ 0,∀z ≥ 1

m
.

Verified using properties of the Gamma function.

It remains to compute the Dixmier trace of H∗
f
Hg for f = ej , g = el.
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Step 4: Consider the unitary operator

Uf(z) := f(εz).

where |ε| = 1. Then

U∗H∗
f
HgU = H∗

Uf
HUg.

In particular,
U∗H∗

ej
Hel

U = ε−j−lH∗
ej

Hel
.

Since Dixmier trace is invariant under unitary maps and ε ∈ T can be
taken arbitrary, it follows that

Trω(H∗
ej

Hel
) = 0 if j + l 6= 0.
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When j + l = 0, we saw that H∗
ej

Hel
is diagonal with explicitly given

eigenvalues dk, giving

Trω(H∗
el

Hel
) = lim

k→∞
kdk = · · · = l2

4m
.

On the other hand, direct computation gives

1
2πm

∫ 2π

0

Q(ej , el)(eiθ) dθ = −δj+l,0
jl

4m
.

Thus the left-hand side is equal to Trω(H∗
el

Hel
) for any j, l ∈ Z, proving

the last claim and hence Theorem A. ¤
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Proof of Theorem B

Theorem B. Let
w(z) = ρ(z)|z|qe−|z|2

where q ∈ R and

ρ(z) is bounded and bounded away from 0 as z →∞.

Then
(i) f ∈ As, s < 0 =⇒ Tf ∈ S−2/s,∞.
(ii) f ∈ As, s < −2/p =⇒ Tf ∈ Sp (p ≥ 1).
(iii) f, g ∈ A0 =⇒ H∗

f Hg ∈ SDixm and Trω is given by the same
formula as for w(z) = e−|z|

2
.
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Quite generally, consider Toeplitz operators Tf on some weighted Fock
space Fw, and the Toeplitz operators T

(ρ)
f on the weighted Fock space

Fρw, where ρ is a positive function.
We assume that both spaces contain a common dense subset (e.g. poly-
nomials).

Proposition. (i) The operator Tρ is (possibly unbounded) densely de-
fined, selfadjoint and positive (i.e. 〈Tρf, f〉 ≥ 0 ∀f ∈ domTρ), hence has
an inverse T−1

ρ with the same properties.

(ii) The positive square root T
1/2
ρ of Tρ extends by continuity to a

unitary isomorphism of Fρw onto Fw.
(iii) For any f ∈ L∞(C), we have under this isomorphism

T
(ρ)
f

∼= T−1/2
ρ TρfT−1/2

ρ .
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Proof of Theorem B: Set w(z) = e−|z|
2

in the last Proposition.

By (iii), T
(ρ)
f belongs to some unitary ideal like Sp, I−s, etc., if and only

if T
−1/2
ρ TρfT

−1/2
ρ does.

Using the relationship between the Toeplitz operators on F1 and the
Weyl operators on L2(R), this reduces the problem again to the one
of membership of (sums of products of) Weyl operators in these ideals,
which are handled by standard machinery for ΨDOs. ¤
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More details in:

• H. Bommier-Hato, M. Englǐs, E.-H. Youssfi: Dixmier trace and the
Fock space, http://www.math.cas.cz/englis/79.pdf
(the case of standard Fock space; to appear in Bull. Sci. Math.)

• H. Bommier-Hato, M. Englǐs, E.-H. Youssfi: Dixmier classes on
generalized Segal-Bargmann-Fock spaces,
http://www.math.cas.cz/englis/SBargm.pdf

(Theorems A+B, Fact C)

Thanks for your attention!


