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Consider a polynomial p € C[z,w]. Its zero variety is the set

Z, = {(z,w) € C?: p(z,w) = 0}
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Consider a polynomial p € C[z,w]. Its zero variety is the set
Z, = {(z,w) € C?: p(z,w) = 0}
Say p defines a distinguished variety if
for all (z,w) € Z,,|z| =1 if and only if |w| = 1. (DV)

Examples:
e p(z,w) =z — w (boring)

o p(z,w) =2z%> —w? = (z— w)(z + w) (mostly boring)
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Consider a polynomial p € C[z,w]. Its zero variety is the set
Z, = {(z,w) € C?: p(z,w) = 0}

Say p defines a distinguished variety if

for all (z,w) € Z,,|z| =1 if and only if |w| = 1. (DV)
Examples:
e p(z,w) =z — w (boring)
o p(z,w) =2z%> —w? = (z— w)(z + w) (mostly boring)

e p(z,w) = z> — w? (not boring)
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The zero variety in the last example
p(z,w) = 23 — w?

is called the Neil parabola. Since

op 0
grad(Cp = <857 85/) = (3227 72W)7

the origin (0,0) is a singular point (in this case, a cusp).
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The zero variety in the last example
p(z,w) = 23 — w?

is called the Neil parabola. Since

op 0
grad(Cp = <857 85/) = (3227 72W)7

the origin (0,0) is a singular point (in this case, a cusp).

Mostly we are interested in analytic functions on
V=2,nD?%

Notice 9V C 9D x 9D C 9(D x D).
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More examples:

n
aj —w . .o
zZm = H = with a; distinct, nonzero
1—atw’ J
j=1 J

The set
V={(z,w) €D?: 2" = By(2)}

is a smooth distinguished variety; in fact it is a finite Riemann
surface.
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aj —

V={z"= 71 }ﬂ]D)2

j=1
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aj—w

V={z"=
j=1

N D?
1-— a}‘w}

defines a finite Riemann surface of genus

(m—1)(n—1)—(k—-1)
2

g:

with k = gcd(m, n) disks removed.
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n
1—a*w}mD
j=1 J

V={z"=

defines a finite Riemann surface of genus

(m—1)(n—1)—(k—-1)
2

g:

with k = gcd(m, n) disks removed.

e m = n=2: annulus, every annulus arises this way (Bell)
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n
1—a*w}mD
j=1 J

V={z"=

defines a finite Riemann surface of genus

(m—1)(n—1)—(k—-1)
2

g:

with k = gcd(m, n) disks removed.
e m = n=2: annulus, every annulus arises this way (Bell)

@ every finitely connected planar domain is a variety, but not
smooth if 2 or more holes (Rudin, Fedorov)
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Definition
Let V be a distinguished variety. A function f : V — C is
holomorphic at (z, w) € V if there exist:
@ a neighborhood Q of (z,w) in C?, and
@ a holomorphic function F : Q — C
such that

Flyna = flvna.
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Definition
Let V be a distinguished variety. A function f : V — C is
holomorphic at (z, w) € V if there exist:
@ a neighborhood Q of (z,w) in C?, and
@ a holomorphic function F : Q — C
such that

Flyna = flvna.

FACT (H. Cartan): If f is holomorphic on V then there exists an F
holomorphic on D? such that F|y = f.
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Definition
Let V be a distinguished variety. A function f : V — C is
holomorphic at (z, w) € V if there exist:
@ a neighborhood Q of (z,w) in C?, and
@ a holomorphic function F : Q — C
such that

Flyna = flvna.

FACT (H. Cartan): If f is holomorphic on V then there exists an F
holomorphic on D? such that F|y = f.

Example: what do the holomorphic functions on the Neil parabola
N look like?
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The Neil parabola
N={(z,w) eD?: 22 = w?}
is paramaterized by the disk: the map
Yt — (13 8)
is a holomorphic bijection of D with N.
f — f o) is an isomorphism of Hol(N') with

{f € Hol(D) : f'(0) = 0}.
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N ={(z,w) eD?: 22 = w?}
Y(t) = (t27t3)
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N ={(z,w) eD?: 23 = w?}
w(t) = (£, %)
Take f holmorphic on N, extend to D? (Cartan): then

o0

f(T/J(t)) = Z amn(tz)m(t3)n = Z bktk

m,n=0 k#0
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N ={(z,w) eD?: 23 = w?}
w(t) = (£, %)
Take f holmorphic on N, extend to D? (Cartan): then

o0

f(T/J(t)) = Z amn(tz)m(t3)n = Z bktk

m,n=0 k#0

Conversely for k # 1 write tX = (t2)™(t3n), then

Z bktk = Z b2m+3n(t2)m(t3)n

k#0 m,n
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N ={(z,w) eD?: 23 = w?}
w(t) = (£, %)
Take f holmorphic on N, extend to D? (Cartan): then

o0

f(T/J(t)) = Z amn(tz)m(t3)n = Z bktk

m,n=0 k#0

Conversely for k # 1 write tX = (t2)™(t3n), then

Z bktk = Z b2m+3n(t2)m(t3)n

k#0 m,n

Conclusion:

Hol(N) = {f € Hol(D) : f'(0) = 0}
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This was a special case of a general fact:

Theorem (Agler-McCarthy,2007)

Let V C D? be a distinguished variety. Then there exist:
@ a finite Riemann surface R,
@ a holomorphic map ¢ : R — V, and
e a finite codimension subalgebra A C Hol(R)
such that
f—fou

is an isomrophism of Hol(V) with A.
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This was a special case of a general fact:

Theorem (Agler-McCarthy,2007)
Let V C D? be a distinguished variety. Then there exist:

@ a finite Riemann surface R,
@ a holomorphic map ¢ : R — V, and
@ a finite codimension subalgebra A C Hol(R)

such that
f—fou

is an isomrophism of Hol(V) with A.

The map v has the form

t = (1(t), ¥2(1))

with |¢1] = [1)2| =1 on R, and p(t1,12) = 0. In other words, an
algebraic pair of inner functions on R.
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Determinantal representations:

Theorem (Agler-McCarthy 2005, Knese 2009)

If ® is a rational matrix inner function, then

det(wl — ®(z2)) =0

defines a distinguished variety,; conversely every distinguished
variety may be put in this form.
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Determinantal representations:

Theorem (Agler-McCarthy 2005, Knese 2009)

If ® is a rational matrix inner function, then

det(wl — ®(z2)) =0

defines a distinguished variety,; conversely every distinguished
variety may be put in this form.

Example:

then
det(wh — ®(z2)) = det <_W2 ‘Z> =w?- 2,

the Neil parabola.
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Idea of proof:
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Idea of proof:

Let V = Z,ND? and choose a nice measure dy on ) (e.g. push
down harmonic measure from OR.
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Idea of proof:

Let V = Z,ND? and choose a nice measure dy on ) (e.g. push
down harmonic measure from OR.

Operators
M,, M, € B(H*(u)

are commuting isometries with g(M,, M,,) = 0. The pair has a
Sz.-Nagy—Foais model

M, = S® I, M, =(S)

for a matrix inner function ¢.
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Idea of proof:

Let V = Z,ND? and choose a nice measure dy on ) (e.g. push
down harmonic measure from OR.

Operators
M,, M, € B(H*(u)

are commuting isometries with g(M,, M,,) = 0. The pair has a
Sz.-Nagy—Foais model

M, 2S5® I, M, =d(S)
for a matrix inner function ®. Or we could take

M, = W(S), M, ~S®I,
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Idea of proof:
Let V = Z,ND? and choose a nice measure dy on ) (e.g. push
down harmonic measure from OR.

Operators
M,, M, € B(H*(u)

are commuting isometries with g(M,, M,,) = 0. The pair has a
Sz.-Nagy—Foais model

M, 2S5® I, M, =d(S)
for a matrix inner function ®. Or we could take
M, =WV¥(S), M,=5xI,

Then
det(zl, — ®(w)) = det(wl, — ¥(z)) =0

defines V.
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Application: Nevanlinna-Pick interpolation on V
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Application: Nevanlinna-Pick interpolation on V
General question: given points
S1,..-Sn
in a (domain, surface, variety) Q, and points
t,...th

in the unit disk D, when does there exist a holomorphic function
f:Q — D with

fs)=t;, alli=1,...n7?
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Application: Nevanlinna-Pick interpolation on V
General question: given points
S1,..-Sn
in a (domain, surface, variety) Q, and points
t,...th

in the unit disk D, when does there exist a holomorphic function
f:Q — D with

fs)=t;, alli=1,...n7?

Theorem (Pick(1916), Nevanlinna(1919),...)

For Q = DD, the interpolation problem has a solution if and only if

the n X n matrix
1-— t,'i'}k

— sis*
1 SiS;
is positive semidefinite.
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Application: Nevanlinna-Pick interpolation on V
General question: given points
S1,-.-Sn
in a (domain, surface, variety) Q, and points
t,...th

in the unit disk D, when does there exist a holomorphic function
f:Q — D with

fs)=t;, alli=1,...n7?

Theorem (Pick(1916), Nevanlinna(1919),...)

For Q = DD, the interpolation problem has a solution if and only if
the n X n matrix

1- :
1775"5; = (1 = t’t_] )k(Sf,Sj)

is positive semidefinite.
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Determinantal representation = reproducing kernels:
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Determinantal representation = reproducing kernels:

For each matrix inner function giving a determinantal

representation
V = {det(wl — ®(z)) = 0},

there is an analytic (on V) family of “eigenvectors” Q(z, w)
Q(z, w)®(2) = wQ(z, w)

for all (z,w) € V.
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Determinantal representation = reproducing kernels:

For each matrix inner function giving a determinantal

representation
V = {det(wl — ®(z)) = 0},

there is an analytic (on V) family of “eigenvectors” Q(z, w)
Q(z, w)®(2) = wQ(z, w)

for all (z,w) € V.
Example:

since 22 = w2 on \V
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In addition to

Q(z,w)d(z) = wQ(z, w)

we have P(z,w) so that for the “companion” matrix inner
function WV,
P(z, w)¥(w) = zP(z, w)
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In addition to

Q(z,w)d(z) = wQ(z, w)

we have P(z,w) so that for the “companion” matrix inner

function WV,
P(z, w)¥(w) = zP(z, w)

For (z,w) € V, (¢,n) € V, we have the identity

Q(z, w)Q(¢, n)* _ P(z, w)P(¢, n)*
1—2zC 1—wq

Conversely, if P, Q are vector polynomials satisfying the identity,
the come from a determinantal representation.
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Qz.w)QU. )" _ P(z,w)P(C.n)"
1—-2zC 1—wpy
Call the above expression K((z,w),(¢,n)). Then
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Qz.w)QU. )" _ P(z,w)P(C.n)"
1—-2zC 1—wpy
Call the above expression K((z,w),(¢,n)). Then

Theorem (Knese, McCullough, J.)

Let V be an irreducible distinguished variety. There exists
f € H*(V) with

IC(Z,'7 W,') =t and HfHoo <1
if and only if the matrices
(1 - t,‘tf)K((Z,‘, Wf)a (Zj) VVJ))

are all positive semidefinite, over all choices of determinantal
representation.
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For the Neil parabola, we had
H®(N) = {f € H>®(D) : f'(0) = 0}.

Interpolation theorem recovers result of
Davidson-Paulsen-Raghupathi-Singh
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Ingredients of proof:
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Ingredients of proof:

Step 1) The kernels

Q(z, w)Q(¢,m)* _ P(z, w)P(¢,n)"
1-2zC 1—wn

over all determinantal representations form a complete
Nevanlinna-Pick family: fix one such kernel k with associated
RKHS H?(k). Fix (20, wp) € V.
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Ingredients of proof:

Step 1) The kernels

Q(z, w)Q(¢,m)* _ P(z, w)P(¢,n)"
1-2zC 1—wn

over all determinantal representations form a complete
Nevanlinna-Pick family: fix one such kernel k with associated
RKHS H?(k). Fix (z0,wp) € V. The kernel for the subspace

{f € H?(k) : f(z0, wp) = 0}

has the form

1
(T —2zz)(1 — wwg

K((z w), (¢,m))

(1 = 20¢*)(1 — won*)
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Step 2) Define a new norm on polynomials by
Ipllx = Sl;(p{HMPHB(H%K))}
Now by Step 1, interpolation problem is solved for H® norm by a

general interpolation theorem for kernel families
(Knese-McCullough-J)
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Step 3) Finally, prove the K norm equals the supremum norm on
V—this follows from

Lemma

If f € H®(V) and ||f||« < 1, there is a sequence of polynomials
pn € C|z, w] such that

@ |pp|<1onV, and
@ p, — f locally uniformly on V
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Dilations & spectral sets:

Let g(z, w) define a distinguished variety V.
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Dilations & spectral sets:
Let g(z, w) define a distinguished variety V.

Question: given commuting contractive operators S, T € B(H)
with g(S, T) = 0, when do there exist commuting unitary
operators U, V € B(K) with g(U, V) =0 and

S"T"=PuUTV|,?
Necessary: for all polynomials p,

Ip(S; T < llpllv.co
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A homomorphism
m: A(V) — B(H)

is contractive if
|7 ()lleHy < fllo
for all f € A(V),
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A homomorphism
m: A(V) — B(H)

is contractive if
|7 ()lleHy < fllo

for all f € A(V),
and completely contractive if

I (Fl ey < il

for all matrices f € M,(A(V)).
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A homomorphism
m: A(V) — B(H)

is contractive if
|7 ()lleHy < fllo

for all f € A(V),
and completely contractive if

I ()l sy < Nl[fijlloo
for all matrices f € M,(A(V)).

Arveson: S, T dilate if and only if the contractive homomorphism

m(p) =p(S, T)

is completely contractive.
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Say rational dilation holds on V if every contractive 7 is
completely contractive.
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Say rational dilation holds on V if every contractive 7 is
completely contractive.

Rational dilation

Mike Jury Function Spaces on Varieties



Say rational dilation holds on V if every contractive 7 is
completely contractive.

Rational dilation holds on the disk (Sz.-Nagy dilation)
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Say rational dilation holds on V if every contractive 7 is
completely contractive.

Rational dilation holds on the disk (Sz.-Nagy dilation)
...holds on the annulus (Agler)
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Say rational dilation holds on V if every contractive 7 is
completely contractive.

Rational dilation holds on the disk (Sz.-Nagy dilation)
...holds on the annulus (Agler)

...fails on a two-holed planar domain (Dritschel-McCullough,
Agler-Harman-Raphael)
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Theorem (Dritschel, McCullough, J.)

Rational dilation fails on the Neil parabola N .
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Theorem (Dritschel, McCullough, J.)
Rational dilation fails on the Neil parabola N .

In fact: there is a representation
I A(N) — M12><12((C)

contractive but not 2-contractive.

Mike Jury Function Spaces on Varieties



Theorem (Dritschel, McCullough, J.)
Rational dilation fails on the Neil parabola N .

In fact: there is a representation
I A(N) — M12><12((C)

contractive but not 2-contractive.

As before identify A(N') with subalgebra of A(D):

AW = {f € AD) : f(0) = 0}.
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Convexity approach (Agler):
Let
1—-f°

The set P is compact and convex, let

P:{1+f-f€H°°(N),f(0):1}

& = extreme points of P
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Convexity approach (Agler):

Let o
P:{lff;fewwN)ﬁmzl}

The set P is compact and convex, let
& = extreme points of P

For each f € P we have a Choquet integral

1+f 14 ¢
1—f_Ll—@dMﬂ
The functions 1 N ¢

are called test functions for H*(N\).
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Representing the unit ball of H>(N):
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Representing the unit ball of H>(N):

Rearringing the Choquet integral we have
1= F(@)F ()’ = [ 1= 0u(z)ou(w)” diias(t)

where p is a positive measure valued kernel on D x ID. To proceed
we need this more explicitly...
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D* = one-point compactification of D

Ua(z) = zzl)‘_%zz, . (z) = z% (test functions)

Mike Jury Function Spaces on Varieties



D* = one-point compactification of D

¥a(z) = 22 1)‘__{2, . (z) = z% (test functions)

Theorem (Pickering)

If f lies in the unit ball of A(N') and is smooth across the
boundary then

1= f(2)f(w)" = /D*(l = Ve(2)e(w)") dpiz,w(t)

where i is a positive M(D*)-valued kernel.
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The test functions can be pushed back down to N, we get

AZ —w
Z— \N'w

7¢*(Z) =z

oa(z,w) =1z

Pickering also shows no (closed) subcollection of test functions
suffices.
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The test functions can be pushed back down to N, we get

AZ —w
Z— \N'w

oa(z,w) =1z

Pickering also shows no (closed) subcollection of test functions
suffices. Corollary: a pair of commuting, contractive, invertible
matrices X, Y with X3 = Y? give a contractive representation of

A(N) if and only if
X(AX = Y)(X = y)!

is contractive for all A\ € D.
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Loosely, moving to matrix valued F, if F every n X n matrix
function also has a representation

L= FEFW) = | (L= 0u@)0ew)) dia(t)

*

then one can pass (nice) representaitons inside the integral to
conclude contractive implies completely contractive.
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Conversely, let § be a finite set and form the closed, convex cone

G = {Hzw) = [ (1= 0l2)in(w)) dielt)
where f1, ,, are matrix-valued measures. If for some F we have
I = F(z)F(w)" ¢ G
then we can separate | — F(z)F(w)* from C; with a positive

functional, apply GNS to get a representation that is contractive
but NOT completely contractive.
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Key step: if F is a matrix inner function in M, ® A(N), an
integral representation for F imposes constraints on its zeroes...
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F(z) = z2¢'(z), ® rational, inner, degree 2,

Theorem

If F is representable as

*

I — F(z)F(w)" = / (1= o) e (w)") dpiz(2)

for z, w in a large finite set §§, then either

(# O 1 0
¢—<0 ¢2> (o ¢1¢2>
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