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Consider a polynomial p ∈ C[z ,w ]. Its zero variety is the set

Zp =: {(z ,w) ∈ C2 : p(z ,w) = 0}

Say p defines a distinguished variety if

for all (z ,w) ∈ Zp, |z | = 1 if and only if |w | = 1. (DV)

Examples:

p(z ,w) = z − w (boring)

p(z ,w) = z2 − w2 = (z − w)(z + w) (mostly boring)

p(z ,w) = z3 − w2 (not boring)
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The zero variety in the last example

p(z ,w) = z3 − w2

is called the Neil parabola. Since

gradCp =

(
∂p

∂z
,
∂p

∂w

)
= (3z2,−2w),

the origin (0, 0) is a singular point (in this case, a cusp).

Mostly we are interested in analytic functions on

V = Zp ∩ D2.

Notice ∂V ⊂ ∂D× ∂D ( ∂(D× D).
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More examples:

zm =
n∏

j=1

aj − w

1− a∗j w
, with aj distinct, nonzero

The set
V =

{
(z ,w) ∈ D2 : zm = Bn(z)

}
is a smooth distinguished variety; in fact it is a finite Riemann
surface.
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V = {zm =
n∏

j=1

aj − w

1− a∗j w
} ∩ D2

defines a finite Riemann surface of genus

g =
(m − 1)(n − 1)− (k − 1)

2

with k = gcd(m, n) disks removed.

m = n = 2: annulus, every annulus arises this way (Bell)

every finitely connected planar domain is a variety, but not
smooth if 2 or more holes (Rudin, Fedorov)
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Definition

Let V be a distinguished variety. A function f : V → C is
holomorphic at (z ,w) ∈ V if there exist:

a neighborhood Ω of (z ,w) in C2, and

a holomorphic function F : Ω→ C
such that

F |V∩Ω = f |V∩Ω.

FACT (H. Cartan): If f is holomorphic on V then there exists an F
holomorphic on D2 such that F |V = f .

Example: what do the holomorphic functions on the Neil parabola
N look like?
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The Neil parabola

N = {(z ,w) ∈ D2 : z3 = w2}

is paramaterized by the disk: the map

ψ : t → (t2, t3)

is a holomorphic bijection of D with N .

f → f ◦ ψ is an isomorphism of Hol(N ) with

{f ∈ Hol(D) : f ′(0) = 0}.
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N = {(z ,w) ∈ D2 : z3 = w2}

ψ(t) = (t2, t3)

Take f holmorphic on N , extend to D2 (Cartan): then

f (ψ(t)) =
∞∑

m,n=0

amn(t2)m(t3)n =
∑
k 6=0

bkt
k

Conversely for k 6= 1 write tk = (t2)m(t3n), then∑
k 6=0

bkt
k =

∑
m,n

b2m+3n(t2)m(t3)n

Conclusion:

Hol(N ) ∼= {f ∈ Hol(D) : f ′(0) = 0}

Mike Jury Function Spaces on Varieties



N = {(z ,w) ∈ D2 : z3 = w2}

ψ(t) = (t2, t3)

Take f holmorphic on N , extend to D2 (Cartan): then

f (ψ(t)) =
∞∑

m,n=0

amn(t2)m(t3)n =
∑
k 6=0

bkt
k

Conversely for k 6= 1 write tk = (t2)m(t3n), then∑
k 6=0

bkt
k =

∑
m,n

b2m+3n(t2)m(t3)n

Conclusion:

Hol(N ) ∼= {f ∈ Hol(D) : f ′(0) = 0}

Mike Jury Function Spaces on Varieties



N = {(z ,w) ∈ D2 : z3 = w2}

ψ(t) = (t2, t3)

Take f holmorphic on N , extend to D2 (Cartan): then

f (ψ(t)) =
∞∑

m,n=0

amn(t2)m(t3)n =
∑
k 6=0

bkt
k

Conversely for k 6= 1 write tk = (t2)m(t3n), then∑
k 6=0

bkt
k =

∑
m,n

b2m+3n(t2)m(t3)n

Conclusion:

Hol(N ) ∼= {f ∈ Hol(D) : f ′(0) = 0}

Mike Jury Function Spaces on Varieties



N = {(z ,w) ∈ D2 : z3 = w2}

ψ(t) = (t2, t3)

Take f holmorphic on N , extend to D2 (Cartan): then

f (ψ(t)) =
∞∑

m,n=0

amn(t2)m(t3)n =
∑
k 6=0

bkt
k

Conversely for k 6= 1 write tk = (t2)m(t3n), then∑
k 6=0

bkt
k =

∑
m,n

b2m+3n(t2)m(t3)n

Conclusion:

Hol(N ) ∼= {f ∈ Hol(D) : f ′(0) = 0}

Mike Jury Function Spaces on Varieties



This was a special case of a general fact:

Theorem (Agler-McCarthy,2007)

Let V ⊂ D2 be a distinguished variety. Then there exist:

a finite Riemann surface R,

a holomorphic map ψ : R → V, and

a finite codimension subalgebra A ⊂ Hol(R)

such that
f → f ◦ ψ

is an isomrophism of Hol(V) with A.

The map ψ has the form

t → (ψ1(t), ψ2(t))

with |ψ1| = |ψ2| = 1 on ∂R, and p(ψ1, ψ2) = 0. In other words, an
algebraic pair of inner functions on R.
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Determinantal representations:

Theorem (Agler-McCarthy 2005, Knese 2009)

If Φ is a rational matrix inner function, then

det(wI − Φ(z)) = 0

defines a distinguished variety; conversely every distinguished
variety may be put in this form.

Example:

Φ(z) =

(
0 z
z2 0

)
then

det(wI2 − Φ(z)) = det

(
w −z
−z2 w

)
= w2 − z3,

the Neil parabola.
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Idea of proof:

Let V = Zq ∩ D2 and choose a nice measure dµ on ∂V (e.g. push
down harmonic measure from ∂R.

Operators
Mz , Mw ∈ B(H2(µ)

are commuting isometries with q(Mz ,Mw ) = 0. The pair has a
Sz.-Nagy–Foais model

Mz
∼= S ⊗ Im, Mw

∼= Φ(S)

for a matrix inner function Φ. Or we could take

Mz
∼= Ψ(S), Mw

∼= S ⊗ In

Then
det(zIm − Φ(w)) = det(wIn −Ψ(z)) = 0

defines V.
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Application: Nevanlinna-Pick interpolation on V

General question: given points

s1, . . . sn

in a (domain, surface, variety) Ω, and points

t1, . . . tn

in the unit disk D, when does there exist a holomorphic function
f : Ω→ D with

f (si ) = ti , all i = 1, . . . n ?

Theorem (Pick(1916), Nevanlinna(1919),...)

For Ω = D, the interpolation problem has a solution if and only if
the n × n matrix

1− ti t
∗
j

1− si s∗j

is positive semidefinite.
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Determinantal representation =⇒ reproducing kernels:

For each matrix inner function giving a determinantal
representation

V = {det(wI − Φ(z)) = 0},

there is an analytic (on V ) family of “eigenvectors” Q(z ,w)

Q(z ,w)Φ(z) = wQ(z ,w)

for all (z ,w) ∈ V.
Example:

(
w z

)( 0 z
z2 0

)
=
(
z3 wz

)
= w

(
w z

)
since z3 = w2 on N
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In addition to
Q(z ,w)Φ(z) = wQ(z ,w)

we have P(z ,w) so that for the “companion” matrix inner
function Ψ,

P(z ,w)Ψ(w) = zP(z ,w)

For (z ,w) ∈ V , (ζ, η) ∈ V , we have the identity

Q(z ,w)Q(ζ, η)∗

1− zζ
=

P(z ,w)P(ζ, η)∗

1− wη

Conversely, if P,Q are vector polynomials satisfying the identity,
the come from a determinantal representation.
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Q(z ,w)Q(ζ, η)∗

1− zζ
=

P(z ,w)P(ζ, η)∗

1− wη

Call the above expression K ((z ,w), (ζ, η)). Then

Theorem (Knese, McCullough, J.)

Let V be an irreducible distinguished variety. There exists
f ∈ H∞(V) with

f (zi ,wi ) = ti and ‖f ‖∞ ≤ 1

if and only if the matrices

(1− ti t
∗
j )K ((zi ,wi ), (zj ,wj))

are all positive semidefinite, over all choices of determinantal
representation.
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For the Neil parabola, we had

H∞(N ) ∼= {f ∈ H∞(D) : f ′(0) = 0}.

Interpolation theorem recovers result of
Davidson-Paulsen-Raghupathi-Singh
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Ingredients of proof:

Step 1) The kernels

Q(z ,w)Q(ζ, η)∗

1− zζ
=

P(z ,w)P(ζ, η)∗

1− wη
(1)

over all determinantal representations form a complete
Nevanlinna-Pick family: fix one such kernel k with associated
RKHS H2(k). Fix (z0,w0) ∈ V. The kernel for the subspace

{f ∈ H2(k) : f (z0,w0) = 0}

has the form

1

(1− zz∗0 )(1− ww∗0
K̃ ((z ,w), (ζ, η))

1

(1− z0ζ∗)(1− w0η∗)
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Step 2) Define a new norm on polynomials by

‖p‖K = sup
K
{‖Mp‖B(H2(K))}

Now by Step 1, interpolation problem is solved for H∞K norm by a
general interpolation theorem for kernel families
(Knese-McCullough-J)
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Step 3) Finally, prove the K norm equals the supremum norm on
V–this follows from

Lemma

If f ∈ H∞(V) and ‖f ‖∞ ≤ 1, there is a sequence of polynomials
pn ∈ C[z ,w ] such that

|pn| ≤ 1 on V, and

pn → f locally uniformly on V
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Dilations & spectral sets:

Let q(z ,w) define a distinguished variety V.

Question: given commuting contractive operators S ,T ∈ B(H)
with q(S ,T ) = 0, when do there exist commuting unitary
operators U,V ∈ B(K ) with q(U,V ) = 0 and

SmT n = PHU
mV n|H ?

Necessary: for all polynomials p,

‖p(S ,T )‖ ≤ ‖p‖V,∞
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A homomorphism
π : A(V)→ B(H)

is contractive if
‖π(f )‖B(H) ≤ ‖f ‖∞

for all f ∈ A(V ),

and completely contractive if

‖[π(fij)]‖B(H) ≤ ‖[fij‖∞

for all matrices f ∈ Mn(A(V)).

Arveson: S ,T dilate if and only if the contractive homomorphism

π(p) = p(S ,T )

is completely contractive.
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Say rational dilation holds on V if every contractive π is
completely contractive.

Rational dilation holds on the disk (Sz.-Nagy dilation)
...holds on the annulus (Agler)
...fails on a two-holed planar domain (Dritschel-McCullough,
Agler-Harman-Raphael)
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Theorem (Dritschel, McCullough, J.)

Rational dilation fails on the Neil parabola N .

In fact: there is a representation

π : A(N )→ M12×12(C)

contractive but not 2-contractive.

As before identify A(N ) with subalgebra of A(D):

A(N ) = {f ∈ A(D) : f ′(0) = 0}.
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Convexity approach (Agler):

Let

P =

{
1 + f

1− f
: f ∈ H∞(N ), f (0) = 1

}
The set P is compact and convex, let

E = extreme points of P

For each f ∈ P we have a Choquet integral

1 + f

1− f
=

∫
E

1 + φt
1− φt

dµ(t)

The functions

{φ :
1 + φ

1− φ
∈ E}

are called test functions for H∞(N ).
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Representing the unit ball of H∞(N ):

Rearringing the Choquet integral we have

1− f (z)f (w)∗ =

∫
E

1− φt(z)φt(w)∗ dµzw (t)

where µ is a positive measure valued kernel on D× D. To proceed
we need this more explicitly...
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D∗ = one-point compactification of D

ψλ(z) = z2 λ−z
1−λz , ψ∗(z) = z2 (test functions)

Theorem (Pickering)

If f lies in the unit ball of A(N ) and is smooth across the
boundary then

1− f (z)f (w)∗ =

∫
D∗

(1− ψt(z)ψt(w)∗) dµz,w (t)

where µ is a positive M(D∗)-valued kernel.
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The test functions can be pushed back down to N , we get

φλ(z ,w) = z
λz − w

z − λ∗w
, φ∗(z) = z

Pickering also shows no (closed) subcollection of test functions
suffices.

Corollary: a pair of commuting, contractive, invertible
matrices X ,Y with X 3 = Y 2 give a contractive representation of
A(N ) if and only if

X (λX − Y )(X − λ∗Y )−1

is contractive for all λ ∈ D.
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Loosely, moving to matrix valued F , if F every n × n matrix
function also has a representation

1− F (z)F (w)∗ =

∫
D∗

(1− ψt(z)ψt(w)∗) dµz,w (t)

then one can pass (nice) representaitons inside the integral to
conclude contractive implies completely contractive.
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Conversely, let F be a finite set and form the closed, convex cone

CF =

{
H(z ,w) =

∫
D∗

(1− ψt(z)ψt(w)∗) dµz,w (t)

}
where µz,w are matrix-valued measures. If for some F we have

I − F (z)F (w)∗ /∈ CF

then we can separate I − F (z)F (w)∗ from CF with a positive
functional, apply GNS to get a representation that is contractive
but NOT completely contractive.
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Key step: if F is a matrix inner function in M2 ⊗A(N ), an
integral representation for F imposes constraints on its zeroes...
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F (z) = z2Φ(z), Φ rational, inner, degree 2,

Theorem

If F is representable as

I − F (z)F (w)∗ =

∫
D∗

(1− ψt(z)ψt(w)∗) dµz,w (t)

for z ,w in a large finite set F, then either

Φ '
(
φ1 0
0 φ2

)
or

(
1 0
0 φ1φ2

)
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