Similarity of Cowen-Douglas Operators to Backward Bergman Shifts

Hyun Kwon

The University of Alabama

May 21, 2013

< □ > < @ > < E > < E > E のQ@

Ultimate Goal: Similarity Characterization of **Cowen-Douglas Class Operators** \mathcal{H} : a separable Hilbert space $T \in \mathcal{L}(\mathcal{H})$ \mathbb{C} : the complex plane $\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \}$ $\operatorname{ran} T = \{Tx : x \in \mathcal{H}\} \operatorname{ker} T = \{x \in \mathcal{H} : Tx = 0\}$ Operators *T* and *T* are said to be *similar* if for some bounded, invertible operator *A*, we have AT = TA.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Let Ω be a domain in \mathbb{C} . An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be in the *Cowen-Douglas class* $B_1(\Omega)$ if for every $\lambda \in \Omega$,

- 1. ran $(T \lambda)$ is closed.
- 2. dim ker $(T \lambda) = 1$.
- 3. $\bigvee_{\lambda \in \Omega} \ker (T \lambda) = \mathcal{H}.$

Theorem (M. J. Cowen & R. G. Douglas)

For an operator T in this class, a Hermitian holomorphic eigenvector bundle

$$E_T = \coprod_{\lambda \in \Omega} \ \mathcal{E}(\lambda) = \{ (\lambda, v_\lambda) : \lambda \in \Omega, v_\lambda \in \ \mathcal{E}(\lambda) \}$$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

over Ω exists with the metric inherited from \mathcal{H} and the natural projection, $\pi(\lambda, v_{\lambda}) = \lambda$.

Let \mathcal{H} be a reproducing kernel Hilbert space with kernel $k_{\lambda}, \lambda \in \mathbb{D}$. Let $f, g \in \mathcal{H}$ and $z \in \mathbb{D}$. $M_z f = zf(z), \langle M_z f, g \rangle = \langle f, M_z^* g \rangle$ $M_z^* k_{\overline{\lambda}} = \lambda k_{\overline{\lambda}}$ $M_z^* \in B_1(\mathbb{D})$ so that $E_{M_z^*}$ exists. The curvature κ_T of E_T for $T \in B_1(\mathbb{D})$ can be easily calculated as

 $\kappa_T = -\partial\bar{\partial}\log \|k_\lambda\|^2.$

Theorem (H. Kwon & S. Treil) Let $T \in B_1(\mathbb{D})$.

"Similarity of T, $||T|| \leq 1$, on \mathcal{H} , to M_z^* on $H^2(\mathbb{D})$ "

is equivalent to

 $\Delta \phi(z) = \kappa_{M_z^*}(z) - \kappa_T(z)$ for a bounded function ϕ defined on \mathbb{D}'' ,

Similarity to M_z^* on \mathcal{M}_n ?

$$\mathcal{M}_n = \{ f \in \text{Hol}(\mathbb{D}) : \|f\|_n^2 = \sum_{j=0}^\infty |\hat{f}(j)|^2 \frac{1}{\binom{n+j-1}{j}} < \infty \}$$

$$\begin{split} \mathcal{M}_1 &= H^2(\mathbb{D}) \\ \mathcal{M}_n &= \{ f \in \operatorname{Hol}\left(\mathbb{D}\right) : (n-1) \int_{\mathbb{D}} |f(z)|^2 (1-|z|^2)^{n-2} dA(z) < \infty \} = \\ A_{n-2}^2(\mathbb{D}) \text{ for } n \geq 2. \\ \mathcal{M}_n \text{ is a reproducing kernel Hilbert space with reproducing kernel } \\ kernel k_{\lambda}^n &= (1-\bar{\lambda}z)^{-n}, \lambda \in \mathbb{D}. \end{split}$$

 $T \in \mathcal{L}(\mathcal{H})$ is called an *n*-hypercontraction if for all $1 \le k \le n$,

$$\sum_{j=0}^{k} (-1)^{j} \binom{k}{j} (T^{*})^{j} T^{j} \ge 0.$$

Theorem (J. Agler)

An *n*-hypercontration $T \in \mathcal{L}(\mathcal{H})$ with $\lim_k ||T^kh|| = 0$ for every $h \in \mathcal{H}$ is unitarily equivalent to M_z^* restricted to an M_z^* -invariant subspace of a vector-valued space \mathcal{M}_n .

Using this Theorem, we conclude that E_T has the tensor product representation

$$\operatorname{Ker}\left(T-\lambda\right)=\bigvee\{k_{\bar{\lambda}}\}\otimes\mathcal{N}(\lambda),$$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

for some subspace $\mathcal{N}(\lambda)$.

Theorem (R. G. Douglas, H. Kwon, S. Treil) Let $T \in B_1(\mathbb{D})$.

Similarity of an n-hypercontraction T to M_z^* on \mathcal{M}_n

is equivalent to

 $\Delta \phi(z) \ge \kappa_{M_z^*}(z) - \kappa_T(z)$ for some bounded function ϕ defined on \mathbb{D} .

 $\kappa_{M_z^*}(z) = -\frac{n}{(1-|z|^2)^2}$

Ingredients of Proof:

Tensor product structure of E_T .

By Nikolski's Lemma, the corona problem is equivalent to the existence of an analytic projection.

Define projections onto $\bigvee \{k_{\bar{\lambda}}\}\$ and $\mathcal{N}(\lambda)$.

The inner-outer factorization of a bounded, analytic function.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~