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Complex versus real algebraic geometry

Given a polynomial of degree d :

f (x) = a0 + a1x + a2x
2 + ...+ adx

d .

(a) How many complex zeros?

= d

(b) How many real zeros?
≤ d

-Over the complex numbers: complete rigidity.

-Over the reals: complete freedom (besides the upper bound).



Complex versus real algebraic geometry
Given a homogeneous polynomial f of degree d in n + 1 variables:

The zero set Zf is a hypersurface.

- What is the total volume of CZf in CPn?

= Cn · d .

- What is the total volume of RZf in RPn?

≤ C̃n · d .

- What is the total Betti number of CZf in CPn?

= polynomial of degree n in d

- What is the total Betti number of RZf in RPn?

≤ polynomial of degree n in d



Hilbert’s sixteenth problem

First part of Hilbert’s sixteenth problem: study the number and
possible arrangement of the connected components of the zero set
of a polynomial.

The (sharp) maximum for curves:

(A. Harnack) Nf ≤
(d − 1)(d − 2)

2
+ 1

As for possible arrangements, “parity” results are known and some
bounds such as (ν0 = number of empty ovals, d = 2k):

(V. I. Arnold) ν0 ≥ Nf −
(k − 1)(k − 2)

2

Especially little is known in more than 2 + 1 variables.



How many zeros of a random polynomial are real?

How should we define “random”?

Choose a basis for polynomials of degree at most d . Make a
random linear combination with i.i.d. Gaussian coefficients ξk .

An obvious choice: monomials as a basis

f (x) =
d∑

k=0

ξkx
k

Or in projective space RP1:

f (x , y) =
d∑

k=0

ξkx
kyd−k .



Random polynomials over RP1: three Gaussian ensembles

ξk - i.i.d. standard normal Gaussians:

f =
d∑

k=0

ξk fk .

1. Naive model: fk(x , y) = xkyd−k

2. Algebraic geometer’s model: fk(x , y) =
√(d

k

)
xkyd−k

3. Analyst’s model: trigonometric polynomials

{fk(θ)} =

{
1√
2π
,

cos(2θ)√
π

,
sin(2θ)√

π
, ...,

cos(dθ)√
π

,
sin(dθ)√

π

}
(similar for d odd)



How many zeros of a random polynomial are real?
Three models, three answers:

(i) Naive model: Ed = 2
π log d + .6257...+ 2

πd + O(1/d2)

(ii) Algebraic geometer’s model: Ed =
√
d

(iii) Analyst’s model: Ed =
√

d(d+2)
3

Figure : A random polynomial of degree 40.



Calculating the expectation exactly:

If ξk are i.i.d. Gaussians, the joint density function is radial:

ρξ(a) =
d∏

k=0

1√
2π

exp

{
−a2i

2

}
=

exp
{
−r2/2

}
(2π)(d+1)/2

The expectation Ed of number of zeros:

Ed :=
1

(2π)(d+1)/2

∫
Rd+1

|{fa(x) = 0}| exp
{
−r2/2

}
· dV (a).

Main idea for evaluating this: Integral geometry formula.∫
Sd Mγ⊥(a) · dV (a)

Vol(Sd)
=
|γ|
π
.





Extending “Analyst’s model” to more variables

Consider homogeneous polynomials of degree d in n + 1 variables.

- Restrict to the sphere Sn.

- Spherical harmonics provide an o.n. basis in L2(Sn).

Note: A Fourier polynomial can be extended off the sphere either
homogeneously or harmonically.

Pd = Hd

⊕
|x |2Hd−2

⊕
|x |4Hd−4

⊕
...

(Chapter 5 of “Harmonic Function Theory” by Axler, Bourdon,
Ramey)



Random homogeneous polynomials

Using spherical harmonics as a basis for homogeneous polynomials,
build a Gaussian polynomial in n + 1 variables of degree d .



Spherical harmonics of fixed degree (monochromatic wave)
Spherical harmonic = homogeneous harmonic polynomial.

∆h = 0

It is also an eigenfunction of the spherical Laplacian.

∆Snh = −λh.

Restricting to a single eigenspace Hd : “monochromatic wave”.



Generalizing to zero sets in RPn: what is the question?

For a hypersurface in RPn: there are two ways to generalize the
question.

Metric question: “What is the expected n − 1 dimensional
volume?”

Topological question: “What is the expected number of
connected components?”

(The number of connected components Nf = b0(Zf ) is the ”zeroth
Betti number”.)



The metric question

Expected length (area, volume): Can be calculated exactly using
integral geometry.

Obtained by P. Bérard (1984) in the case of random spherical
harmonics, P. Burgisser (2007) for random polynomials, and A.
Lerario, E.L., (2012) for a band of frequencies.

E Vol(Zf ) = δ1/2Vol(Sn−1),

where
δ = Θ(d2),

can be specified exactly.



The topological question: much more difficult!

How many connected components?

No exact formulas known, and asymptotic answers only recently
obtained.

First breakthrough came for the case of spherical harmonics
(monochromatic wave) with n = 2.



Nodal domains for spherical harmonics

(F. Nazarov, M. Sodin, 2009) Spherical harmonics (n = 2):

Ed ≥ cd2, c > 0.

Along with a deterministic upper bound of the same order, this
implies

Ed = Θ(d2).

They used a simple and ingenious “barrier” method.

Result had been conjectured in statistical physics by E. Bogomolny
and C. Schmit (2001).



Expected topology for homogeneous polynomials

(A. Lerario, E. L., 2012) Analyst’s model:

Ed = Θ(dn).

(D. Gayet, J-Y. Welschinger, 2013) Algebraic Geometer’s model:

Ed = Θ(dn/2).

(For n = 2, these behaviors were suggested in an inspiring
hand-written letter from P. Sarnak to B. Gross and J. Harris,
2011.)

“The random curve is 4% Harnack.”



From spherical harmonics to homogeneous polynomials

In order to extend the ”barrier methods” from ”monochromatic
waves” to the full spectrum of frequencies, we used the same basic
outline and had to adapt many estimates using special function
theory.



The barrier method: Outline
A deterministic upper bound of order dn is already known from
work of J. Milnor. The difficulty is the lower bound.

For a point x ∈ Sn consider a neighborhood D(x , r) ⊂ Sn.



The barrier method: Outline

Define the event:

Ω(x , r) = {f (x) > 0 and f |∂D(x ,r) < 0}.

If Ω(x , r) occurs then there is a component of Zf in D(x , r).



Lower bound on expectation

Pack the sphere with disjoint disks D(x , r).

-The radius: take r = ρ/d with ρ a constant chosen later.

-How many such disks? We can find at least k · dn.

The problem is reduced to showing that

P(Ω(x , r)) > c,

Indeed, this would immediately imply

Ed > c · k · dn.



Lower bound on probability of Ω(x , r)
In order to show that

P(Ω(x , r)) > c,

we choose a new o.n. basis that includes one element Bx with
special behavior:

Bx peaks at x and also takes a large negative value on the
boundary ∂D(x , r).

-Namely the order is Θ(dn/2).



Lower bound on probability of Ω(x , r)

Write the random polynomial in this basis:

f = ξ0Bx + f ⊥.

Ω(x , r) occurs if each of the following occurs:

1) E1 : ξ0Bx(x) ≥ 2C0d
n/2

=⇒ ξ0Bx |∂D(x ,r) ≤ −2C0d
n/2

2) E2 : |f ⊥(x)| ≤ C0d
n/2

3) E3 : ‖f ⊥|∂D(x ,r)‖∞ ≤ C0d
n/2

The problem is now reduced to showing that

P(E1 ∩ E2 ∩ E3) > c .

P(E1∩E2∩E3) = P(E1) ·P(E2∩E3) ≥ P(E1) · (1−P(Ẽ2)−P(Ẽ3))



Building a better barrier

For spherical harmonics, Nazarov and
Sodin used one of the standard basis
elements, the normalized “zonal”
harmonic.

For polynomials, the zonal is
insufficient.

A better barrier: Take a window of the zonals of different degrees
(near the top degree) and sum them.



Building a better barrier

Addition of zonals:

-increases order of peaking by a factor of d .
-only increases the norm by a factor of

√
d .

-normalized result: magnifies the old barrier by a factor of
√
d .

(Rigorous proof uses Szegö’s generalization of the Mehler-Heine
asymptotic for Jacobi orthogonal polynomials.)



Controlling the supremum of |f | on ∂D(x , r)

Onel step remaining. We want to show that:

P(‖f |∂D(x ,r)‖∞ > C0d
n/2) < c/C0.

This reduces, by Markov’s inequality, to showing:

E‖f |∂D(x ,r)‖∞ ≤ cdn/2.

For this, we resorted to explicit construction of hyperspherical
harmonics.



Controlling the supremum of |f | on ∂D(x , r)

Want to show:
E‖f |∂D(x ,r)‖∞ ≤ cdn/2.

Explicit construction of hyperspherical harmonics involves

Gegenbauer polynomials, P
( n−1

2
+m)

`−m (cosθ).

f (θ, φ) =
∑
`

∑̀
m=0

∑
j∈Im

ξj`N
m
` (sin θ)mP

( n−1
2

+m)
`−m (cos θ)Yj(φ),

where θ ∈ (0, π), φ ∈ Sn−1, Nm
` constants, Yj(φ) hyperspherical

harmonics of one less variable.



A non-technical part of the estimate

After changing order of summation, condensing some coefficients
using sum law for Gaussians, and applying asymptotic estimates for
small-angle evaluation of Gegenbauer polynomials, the result
follows from combining such estimates with an estimate of
E‖Fm‖∞, which can be deduced from the deterministic estimate:

||Fm||∞ ≤
√
Dm‖Fm‖2.

where Fm is a degree-m Gaussian random hyperspherical harmonic
in Sn−1 (involving all the basis elements), and Dm is the dimension
of the whole space.
(The sup-norm is now over the whole Sn−1.)



Fact for hyperspherical harmonics

The Dm-dimensional space Hm of spherical harmonics of degree m
has a reproducing kernel Kx(y) with ‖Kx‖2 =

√
Dm.

For any spherical harmonic F ∈ Hm:

||F ||∞ ≤
√
Dm‖F‖2.

Proof.

F (x) = 〈F ,Kx〉.

|F (x)| ≤ ‖F‖2‖Kx‖2 =
√
Dm‖F‖2.

||F ||∞ ≤
√
Dm‖F‖2.



Immediate consequences

1. Further addressing Hilbert’s Sixteenth Problem: It follows from
the proof that for ν0, the number of empty components:

ν0 = Θ(dn).

(not an immediate consequence of V. I. Arnold’s bound.)

2. For random surfaces in S3: For each Betti number, bi :

Ebi = Θ(d3).

Eb2 = Eb0 = Θ(d3), by Poincare duality, and

Eb1 = Θ(d3),

using a result of Bürgisser on the Euler characteristic Eχ ≈ −d3

3
√
3
.



Some open questions

Expected arrangement: How much “nesting” occurs on average?
A. Lerario and E. L. (2012) proposed a precise version of this
question and conjecture a relatively low level of nesting.

Variance: What is the order of the second moment?

The many-variable limit: Fixing the degree, what happens as the
number of variables goes to infinity? (We have suspicions of
”universality”.)
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Capturing the level of nesting

Use the tree structure of the components of a curve C to define an
“energy” function h(C ) that is additive for disjoint unions of trees
and multiplicative for appending trees.

Conjecture:

lim
d→∞

logEh(C )

log d
= 2



A Case Study for the many-variable limit: Quadrics

For a quadric, the zeroth Betti number is either 0 or 1, so it is
more interesting to consider the total Betti number.

Random quadric ensemble → random matrix ensemble.

- Kac ensemble → Wigner matrix ensemble.

- Kostlan ensemble → GOE.

- Fubini-Study → matrix ensemble with correlation along diagonal.

The expected total Betti number: Appears to exhibit
“universality”.

What about higher-degree hypersurfaces?



Monochromatic waves: A surprisingly specific conjecture

Before addressing polynomials (full spectrum of eigenspaces), we
consider the restricted case.
(and take n=2)

Conjecture (2001, Bogomolny-Schmit): Expected number of nodal
domains:

Ed ≈
3
√

3− 5

2π
d2.

(They also conjectured the variance has the same order and gave
an explicit constant, and they later conjectured SLE(6) as a scaling
limit.)



Bond-percolation model

To give some idea of the heuristics used for the conjecture from
physics, instead of the sphere, consider the plane.
Consider the “plain” plane wave:

Figure : sin(mx) · sin(my)

Take a small random perturbation of it.

Resulting nodal domains described by bond-percolation.



Bond percolation model for nodal domains



Bond percolation model for nodal domains



Bond percolation model for nodal domains



Bond percolation model for nodal domains



Bond percolation model for nodal domains



Bond percolation model for nodal domains

Reduces the problem to combinatorics (random graphs), if these
leaps of logic are valid.

They obtained the exact constant in the asymptotic (letting the
window of the lattice increase) by applying the saddle-point
method to a certain generating function.


