

Extremal holomorphic maps and the symmetrised bidisc

Zinaida Lykova

Newcastle University, UK

Jointly with J. Agler (UCSD) and N. J. Young (Leeds, Newcastle)

Gargnano, May 2013

Extremality in Kobayashi's hyperbolic complex spaces

Pick showed that a function f is n -extremal for the Schur class $\mathcal{S} = \text{Hol}(\mathbb{D}, \Delta)$ if and only if $f \in \mathcal{B}l_{n-1}$. Here $\mathcal{B}l_{n-1}$ is the set of Blaschke products of degree at most $n - 1$.

Extremality in Kobayashi's hyperbolic complex spaces

Pick showed that a function f is n -extremal for the Schur class $\mathcal{S} = \text{Hol}(\mathbb{D}, \Delta)$ if and only if $f \in \mathcal{B}l_{n-1}$. Here $\mathcal{B}l_{n-1}$ is the set of Blaschke products of degree at most $n - 1$.

A similar notion of extremality, but with n equal to 2, occurs in the theory of hyperbolic complex spaces introduced by S. Kobayashi in 1977. In this context one studies the geometry and function theory of a domain $\Omega \subset \mathbb{C}^d$ with the aid of 2-extremal holomorphic maps from \mathbb{D} to Ω .

Extremality in Kobayashi's hyperbolic complex spaces

Pick showed that a function f is n -extremal for the Schur class $\mathcal{S} = \text{Hol}(\mathbb{D}, \Delta)$ if and only if $f \in \mathcal{B}l_{n-1}$. Here $\mathcal{B}l_{n-1}$ is the set of Blaschke products of degree at most $n - 1$.

A similar notion of extremality, but with n equal to 2, occurs in the theory of hyperbolic complex spaces introduced by S. Kobayashi in 1977. In this context one studies the geometry and function theory of a domain $\Omega \subset \mathbb{C}^d$ with the aid of 2-extremal holomorphic maps from \mathbb{D} to Ω .

A prominent theme in hyperbolic complex geometry is a kind of duality between $\text{Hol}(\mathbb{D}, \Omega)$ and $\text{Hol}(\Omega, \mathbb{D})$, typified by the celebrated theorem of L. Lempert 1986, which in our terminology asserts that if Ω is convex then every 2-extremal map belonging to $\text{Hol}(\mathbb{D}, \Omega)$ is a complex geodesic of Ω (that is, has an analytic left inverse).

Extremality in Kobayashi's hyperbolic complex spaces

Pick showed that a function f is n -extremal for the Schur class $\mathcal{S} = \text{Hol}(\mathbb{D}, \Delta)$ if and only if $f \in \mathcal{B}l_{n-1}$. Here $\mathcal{B}l_{n-1}$ is the set of Blaschke products of degree at most $n - 1$.

A similar notion of extremality, but with n equal to 2, occurs in the theory of hyperbolic complex spaces introduced by S. Kobayashi in 1977. In this context one studies the geometry and function theory of a domain $\Omega \subset \mathbb{C}^d$ with the aid of 2-extremal holomorphic maps from \mathbb{D} to Ω .

A prominent theme in hyperbolic complex geometry is a kind of duality between $\text{Hol}(\mathbb{D}, \Omega)$ and $\text{Hol}(\Omega, \mathbb{D})$, typified by the celebrated theorem of L. Lempert 1986, which in our terminology asserts that if Ω is convex then every 2-extremal map belonging to $\text{Hol}(\mathbb{D}, \Omega)$ is a complex geodesic of Ω (that is, has an analytic left inverse).

The notion of n -extremal map makes sense, however, in much greater generality.

n-extremal holomorphic maps

Definition 1. Let Ω be a domain, let $E \subset \mathbb{C}^N$, let $n \geq 1$, let $\lambda_1, \dots, \lambda_n$ be distinct points in Ω and let $z_1, \dots, z_n \in E$. We say that the interpolation data

$$\lambda_j \mapsto z_j : \Omega \rightarrow E, \quad j = 1, \dots, n,$$

are **extremely solvable** if there exists a map $h \in \text{Hol}(\Omega, E)$ such that $h(\lambda_j) = z_j$ for $j = 1, \dots, n$, but, for any open neighbourhood U of the closure of Ω , there is no $f \in \text{Hol}(U, E)$ such that $f(\lambda_j) = z_j$ for $j = 1, \dots, n$.

Here $\text{Hol}(\Omega, E)$ is the space of holomorphic maps from a domain Ω to a subset E .

n-extremal holomorphic maps

Definition 1. Let Ω be a domain, let $E \subset \mathbb{C}^N$, let $n \geq 1$, let $\lambda_1, \dots, \lambda_n$ be distinct points in Ω and let $z_1, \dots, z_n \in E$. We say that the interpolation data

$$\lambda_j \mapsto z_j : \Omega \rightarrow E, \quad j = 1, \dots, n,$$

are **extremely solvable** if there exists a map $h \in \text{Hol}(\Omega, E)$ such that $h(\lambda_j) = z_j$ for $j = 1, \dots, n$, but, for any open neighbourhood U of the closure of Ω , there is no $f \in \text{Hol}(U, E)$ such that $f(\lambda_j) = z_j$ for $j = 1, \dots, n$.

Here $\text{Hol}(\Omega, E)$ is the space of holomorphic maps from a domain Ω to a subset E .

We say further that $h \in \text{Hol}(\Omega, E)$ is **n-extremal** (for $\text{Hol}(\Omega, E)$) if, for all choices of n distinct points $\lambda_1, \dots, \lambda_n$ in Ω , the interpolation data

$$\lambda_j \mapsto h(\lambda_j) : \Omega \rightarrow E, \quad j = 1, \dots, n,$$

are extremely solvable.

There are no 1-extremal holomorphic maps, so we shall always suppose that $n \geq 2$.

In this talk we shall be mainly concerned with n -extremals for $\text{Hol}(\mathbb{D}, \Gamma)$ where the *symmetrised bidisc* \mathbb{G} in \mathbb{C}^2 is defined to be the set

$$\mathbb{G} \stackrel{\text{def}}{=} \{(z + w, zw) : z, w \in \mathbb{D}\}$$

and Γ is the closure of \mathbb{G} .

There are no 1-extremal holomorphic maps, so we shall always suppose that $n \geq 2$.

In this talk we shall be mainly concerned with n -extremals for $\text{Hol}(\mathbb{D}, \Gamma)$ where the *symmetrised bidisc* \mathbb{G} in \mathbb{C}^2 is defined to be the set

$$\mathbb{G} \stackrel{\text{def}}{=} \{(z + w, zw) : z, w \in \mathbb{D}\}$$

and Γ is the closure of \mathbb{G} .

Jim Agler and Nicholas Young began the study of the open symmetrised bidisc \mathbb{G} in 1995 with the aim of solving a special case of the μ -synthesis problem of H^∞ control.

There are no 1-extremal holomorphic maps, so we shall always suppose that $n \geq 2$.

In this talk we shall be mainly concerned with n -extremals for $\text{Hol}(\mathbb{D}, \Gamma)$ where the *symmetrised bidisc* \mathbb{G} in \mathbb{C}^2 is defined to be the set

$$\mathbb{G} \stackrel{\text{def}}{=} \{(z + w, zw) : z, w \in \mathbb{D}\}$$

and Γ is the closure of \mathbb{G} .

Jim Agler and Nicholas Young began the study of the open symmetrised bidisc \mathbb{G} in 1995 with the aim of solving a special case of the μ -synthesis problem of H^∞ control.

They proved that *the 2-extremals for $\text{Hol}(\mathbb{D}, \mathbb{G})$ coincide with the complex geodesics of \mathbb{G}* .

There are no 1-extremal holomorphic maps, so we shall always suppose that $n \geq 2$.

In this talk we shall be mainly concerned with n -extremals for $\text{Hol}(\mathbb{D}, \Gamma)$ where the *symmetrised bidisc* \mathbb{G} in \mathbb{C}^2 is defined to be the set

$$\mathbb{G} \stackrel{\text{def}}{=} \{(z + w, zw) : z, w \in \mathbb{D}\}$$

and Γ is the closure of \mathbb{G} .

Jim Agler and Nicholas Young began the study of the open symmetrised bidisc \mathbb{G} in 1995 with the aim of solving a special case of the μ -synthesis problem of H^∞ control.

They proved that *the 2-extremals for $\text{Hol}(\mathbb{D}, \mathbb{G})$ coincide with the complex geodesics of \mathbb{G}* .

Note that \mathbb{G} is not isomorphic to any convex domain (Costara).

Interpolation in $\text{Hol}(\mathbb{D}, \Gamma)$

The (finite) interpolation problem for $\text{Hol}(\mathbb{D}, \Gamma)$ is the following:

Given Γ -interpolation data

$$\lambda_j \mapsto z_j, \quad 1 \leq j \leq n, \quad (1)$$

where $\lambda_1, \dots, \lambda_n$ are n distinct points in the open unit disc \mathbb{D} and z_1, \dots, z_n are n points in Γ , find if possible an analytic function

$$h : \mathbb{D} \rightarrow \Gamma \text{ such that } h(\lambda_j) = z_j \text{ for } j = 1, \dots, n. \quad (2)$$

Interpolation in $\text{Hol}(\mathbb{D}, \Gamma)$

The (finite) interpolation problem for $\text{Hol}(\mathbb{D}, \Gamma)$ is the following:

Given Γ -interpolation data

$$\lambda_j \mapsto z_j, \quad 1 \leq j \leq n, \quad (1)$$

where $\lambda_1, \dots, \lambda_n$ are n distinct points in the open unit disc \mathbb{D} and z_1, \dots, z_n are n points in Γ , find if possible an analytic function

$$h : \mathbb{D} \rightarrow \Gamma \text{ such that } h(\lambda_j) = z_j \text{ for } j = 1, \dots, n. \quad (2)$$

If Γ is replaced by the closed unit disc Δ then we obtain the *classical Nevanlinna-Pick problem*, for which there is an extensive theory that furnishes among many other things a simple criterion for the existence of a solution h and an elegant parametrisation of all solutions when they exist.

Interpolation in $\text{Hol}(\mathbb{D}, \Gamma)$

The (finite) interpolation problem for $\text{Hol}(\mathbb{D}, \Gamma)$ is the following:

Given Γ -interpolation data

$$\lambda_j \mapsto z_j, \quad 1 \leq j \leq n, \quad (1)$$

where $\lambda_1, \dots, \lambda_n$ are n distinct points in the open unit disc \mathbb{D} and z_1, \dots, z_n are n points in Γ , find if possible an analytic function

$$h : \mathbb{D} \rightarrow \Gamma \text{ such that } h(\lambda_j) = z_j \text{ for } j = 1, \dots, n. \quad (2)$$

If Γ is replaced by the closed unit disc Δ then we obtain the *classical Nevanlinna-Pick problem*, for which there is an extensive theory that furnishes among many other things a simple criterion for the existence of a solution h and an elegant parametrisation of all solutions when they exist.

There is a satisfactory analytic theory of the problem (2) in the case that the number of interpolation points n is 2, but we are still far from understanding the problem for a general $n \in \mathbb{N}$.

Condition \mathcal{C}_ν

Here we introduce a sequence of necessary conditions for the solvability of an n -point Γ -interpolation problem and put forward a conjecture about sufficiency. We will show here that these conditions are of strictly increasing strength.

Definition 2. *Corresponding to Γ -interpolation data*

$$\lambda_j \in \mathbb{D} \mapsto z_j = (s_j, p_j) \in \mathbb{G}, \quad 1 \leq j \leq n, \quad (3)$$

we introduce:

Condition $\mathcal{C}_\nu(\lambda, z)$

For every Blaschke product v of degree at most ν , the Nevanlinna-Pick data

$$\lambda_j \mapsto \Phi(v(\lambda_j), z_j) = \frac{2v(\lambda_j)p_j - s_j}{2 - v(\lambda_j)s_j}, \quad j = 1, \dots, n, \quad (4)$$

are solvable.

Definition 3. *The function Φ is defined for $(z, s, p) \in \mathbb{C}^3$ such that $zs \neq 2$ by*

$$\Phi(z, s, p) = \frac{2zp - s}{2 - zs}.$$

We shall write $\Phi_z(s, p)$ as a synonym for $\Phi(z, s, p)$.

The Γ -interpolation conjecture

Conjecture 1. *Condition \mathcal{C}_{n-2} is necessary and sufficient for the solvability of an n -point Γ -interpolation problem.*

Conjecture 1 is true in the case $n = 2$. We have no evidence for $n \geq 3$ and we are open minded as to whether or not it is likely to be true for all n .

The Γ -interpolation conjecture

Conjecture 1. *Condition \mathcal{C}_{n-2} is necessary and sufficient for the solvability of an n -point Γ -interpolation problem.*

Conjecture 1 is true in the case $n = 2$. We have no evidence for $n \geq 3$ and we are open minded as to whether or not it is likely to be true for all n .

Observe that Pick's Theorem gives us an easily-checked criterion for the solvability of a Nevanlinna-Pick problem.

Proposition 1. *If $\lambda_j \mapsto z_j = (s_j, p_j)$, $1 \leq j \leq n$, are interpolation data for Γ then condition $\mathcal{C}_\nu(\lambda_1, \dots, \lambda_n, z_1, \dots, z_n)$ holds if and only if, for every Blaschke product v of degree at most ν ,*

$$\left[\frac{1 - v(\lambda_i)p_i\bar{p}_j\bar{v}(\lambda_j) - \frac{1}{2}v(\lambda_i)(s_i - p_i\bar{s}_j) - \frac{1}{2}(\bar{s}_j - \bar{p}_j s_i)\bar{v}(\lambda_j) - \frac{1}{4}(1 - v(\lambda_i)\bar{v}(\lambda_j))s_i\bar{s}_j}{1 - \lambda_i\bar{\lambda}_j} \right]_{i,j=1}^n \quad (5)$$

is positive.

\mathcal{C}_ν are necessary

The conditions \mathcal{C}_ν are all necessary for the solvability of a Γ -interpolation problem.

Theorem 1. *Let $\lambda_1, \dots, \lambda_n$ be distinct points in \mathbb{D} and let $z_j \in \mathbb{G}$ for $j = 1, 2, \dots, n$.*

If there exists an analytic function

$$h : \mathbb{D} \rightarrow \Gamma$$

such that $h(\lambda_j) = z_j$ for $j = 1, 2, \dots, n$ then, for any function v in the Schur class $\mathcal{S} = \text{Hol}(\mathbb{D}, \Delta)$, the Nevanlinna-Pick data

$$\lambda_j \mapsto \Phi(v(\lambda_j), z_j), \quad j = 1, \dots, n, \tag{6}$$

are solvable. In particular, the condition $\mathcal{C}_\nu(\lambda, z)$ holds for every non-negative integer ν .

Extremality in Condition \mathcal{C}_ν

To prove that condition \mathcal{C}_ν suffices for the solvability of an n -point Nevanlinna-Pick problem for Γ it is enough to prove it in the case that \mathcal{C}_ν holds *extremely*. Let us make this notion precise.

Recall that Γ -interpolation data $\lambda_j \mapsto z_j$, $1 \leq j \leq n$, are defined to satisfy condition \mathcal{C}_ν if, for every Blaschke product $v \in \mathcal{Bl}_\nu$ of degree at most ν , the data

$$\lambda_j \mapsto \Phi(v(\lambda_j), z_j), \quad 1 \leq j \leq n, \quad (7)$$

are solvable for the classical Nevanlinna-Pick problem. If, in addition, there exists $m \in \mathcal{Bl}_\nu$ such that the data

$$\lambda_j \mapsto \Phi(m(\lambda_j), z_j), \quad 1 \leq j \leq n,$$

are *extremely* solvable Nevanlinna-Pick data, then we shall say that the data $\lambda_j \mapsto z_j$, $1 \leq j \leq n$, *satisfy \mathcal{C}_ν extremely*, or the condition $\mathcal{C}_\nu(\lambda, z)$ *holds extremely*.

It is well known that Pick's criterion for the solvability of a classical Nevanlinna-Pick problem is expressible by an operator norm inequality; hence condition \mathcal{C}_v can be expressed this way. Let

$$\mathcal{M} = \text{span} \{K_{\lambda_1}, \dots, K_{\lambda_n}\} \subset H^2, \quad (8)$$

where K is the Szegő kernel. Consider Γ -interpolation data

$$\lambda_j \mapsto z_j, \quad 1 \leq j \leq n,$$

and introduce, for any function v in the Schur class, the operator $X(v)$ on \mathcal{M} given by

$$X(v)K_{\lambda_j} = \overline{\Phi(v(\lambda_j), z_j)}K_{\lambda_j}, \quad 1 \leq j \leq n. \quad (9)$$

Pick's Theorem, as reformulated by Sarason, asserts that the Nevanlinna-Pick data

$$\lambda_j \mapsto \Phi(v(\lambda_j), z_j), \quad 1 \leq j \leq n, \quad (10)$$

are solvable if and only if the operator $X(v)$ is a contraction. Furthermore, the Nevanlinna-Pick data (10) are extremally solvable if and only if $\|X(v)\| = 1$.

Thus $\mathcal{C}_\nu(\lambda, z)$ holds if and only if

$$\sup_{v \in \mathcal{B}l_\nu} \|X(v)\| \leq 1. \quad (11)$$

Proposition 2. *For any Γ -interpolation data $\lambda_j \mapsto z_j$, $1 \leq j \leq n$, and $\nu \geq 0$, the following conditions are equivalent.*

- (i) $\mathcal{C}_\nu(\lambda, z)$ holds extremally;
- (ii) $\sup_{v \in \mathcal{B}l_\nu} \|X(v)\| = 1$;
- (iii) $\mathcal{C}_\nu(\lambda, z)$ holds and there exist $m \in \mathcal{B}l_\nu$ and $q \in \mathcal{B}l_{n-1}$ such that

$$\Phi(m(\lambda_j), z_j) = q(\lambda_j), \quad j = 1, \dots, n, \quad (12)$$

Moreover, when condition (iii) is satisfied for some $m \in \mathcal{B}l_\nu$, there is a unique $q \in \mathcal{B}l_{n-1}$ such that equations (12) hold. If, furthermore, the Γ -interpolation data $\lambda_j \mapsto z_j$, $1 \leq j \leq n$, are solvable by an analytic function $h = (s, p) : \mathbb{D} \rightarrow \Gamma$, then

$$\frac{2mp - s}{2 - ms} = q. \quad (13)$$

An auxiliary extremal for the condition $\mathcal{C}_\nu(\lambda, z)$

We shall say that any Blaschke product m with the properties described in Proposition 2(iii) is an *auxiliary extremal* for the condition $\mathcal{C}_\nu(\lambda, z)$.

Examples 2. Let $\lambda_1, \lambda_2, \lambda_3$ be any three distinct points in \mathbb{D} and let $0 < r < 1$. In each of the following examples h is an analytic function from \mathbb{D} to \mathbb{G} and the data $\lambda_j \mapsto h(\lambda_j)$, $1 \leq j \leq 3$, satisfy \mathcal{C}_1 extremally.

(1) Let $h(\lambda) = (2r\lambda, \lambda^2)$. Every degree 0 inner function $m \in \mathbb{T}$ is an auxiliary extremal for \mathcal{C}_1 ; there is no auxiliary extremal of degree 1.

(2) Let $h(\lambda) = (r(1 + \lambda), \lambda)$. Every $m \in \mathcal{Bl}_1$ is an auxiliary extremal for \mathcal{C}_1 . The corresponding q has degree $d(m) + 1$.

An auxiliary extremal for the condition $\mathcal{C}_\nu(\lambda, z)$

(3) Let

$$h(\lambda) = \left(2(1-r) \frac{\lambda^2}{1+r\lambda^3}, \frac{\lambda(\lambda^3+r)}{1+r\lambda^3} \right), \quad \lambda \in \mathbb{D}.$$

The function $m(\lambda) = -\lambda$ is an auxiliary extremal for \mathcal{C}_1 ; there is no auxiliary extremal of degree 0. Here $q(\lambda) = -\lambda^2$.

(4) Let f be a Blaschke product of degree 1 or 2 and let $h = (2f, f^2)$. Every $m \in \mathcal{Bl}_1$ is an auxiliary extremal and, for every m , we have $q = -f$.

Γ -inner functions

Definition 4. A Γ -inner function is an analytic function $h : \mathbb{D} \rightarrow \Gamma$ such that the radial limit

$$\lim_{r \rightarrow 1^-} h(r\lambda) \in b\Gamma \quad (14)$$

for almost all $\lambda \in \mathbb{T}$.

Here $b\Gamma$ is the distinguished boundary of \mathbb{G} (or Γ). It is the symmetrisation of the 2-torus:

$$b\Gamma = \{(z + w, zw) : |z| = |w| = 1\}.$$

By Fatou's Theorem, the radial limit (14) exists for almost all $\lambda \in \mathbb{T}$ with respect to Lebesgue measure.

Observe that, if $h = (h_1, h_2)$ is a Γ -inner function, then h_2 is an inner function on \mathbb{D} in the conventional sense.

The classes $\mathcal{E}_{\nu k}$

Proposition 2 tells us that if $h \in \text{Hol}(\mathbb{D}, \Gamma)$ and $\lambda_1, \dots, \lambda_n$ are distinct points in \mathbb{D} , then the Γ -interpolation data $\lambda_j \mapsto h(\lambda_j)$ satisfy $C_\nu(\lambda, h(\lambda))$ *extremely* if and only if there exists $m \in \mathcal{Bl}_\nu$ such that $\Phi \circ (m, h) \in \mathcal{Bl}_{n-1}$. This leads us to introduce the following classes of rational Γ -inner functions.

Definition 5. For $\nu \geq 0$, $k \geq 1$ we say that the function h is in $\mathcal{E}_{\nu k}$ if $h = (s, p) \in \text{Hol}(\mathbb{D}, \Gamma)$ is rational and there exists $m \in \mathcal{Bl}_\nu$ such that

$$\frac{2mp - s}{2 - ms} \in \mathcal{Bl}_{k-1}.$$

Remark 3. It is obvious that, for every $\nu \geq 0$,

$$\mathcal{E}_{\nu 1} \subset \mathcal{E}_{\nu 2} \subset \dots \subset \mathcal{E}_{\nu k} \subset \mathcal{E}_{\nu, k+1} \subset \dots,$$

and, for every $k \geq 1$,

$$\mathcal{E}_{0k} \subset \mathcal{E}_{1k} \subset \dots \subset \mathcal{E}_{\nu k} \subset \mathcal{E}_{\nu+1, k} \subset \dots.$$

Superficial Γ -inner functions and the classes $\mathcal{E}_{\nu 1}$

For any inner function φ and $\omega \in \mathbb{T}$ the function $h = (\omega + \varphi, \omega\varphi)$ is Γ -inner, and has the property that $h(\lambda)$ lies in the topological boundary $\partial\Gamma$ of Γ for all $\lambda \in \mathbb{D}$.

Recall that $(s, p) \in \partial\Gamma \iff |s| \leq 2$ and $|s - \bar{s}p| = 1 - |p|^2$
 \iff there exist $z \in \mathbb{T}$ and $w \in \Delta$ such that $s = z + w$, $p = zw$.

Definition 6. A function $h \in \text{Hol}(\mathbb{D}, \Gamma)$ is superficial if $h(\mathbb{D}) \subset \partial\Gamma$.

The image of a function in $\text{Hol}(\mathbb{D}, \Gamma)$ is either contained in or disjoint from $\partial\Gamma$.

Lemma 1. If $h \in \text{Hol}(\mathbb{D}, \Gamma)$ is not superficial then $h(\mathbb{D}) \subset \mathbb{G}$.

Proposition 3. A Γ -inner function h is superficial if and only if there is an $\omega \in \mathbb{T}$ and an inner function p such that $h = (\omega p + \bar{\omega}, p)$.

Theorem 4. For every $\nu \geq 1$, the class $\mathcal{E}_{\nu 1}$ is equal to \mathcal{E}_{01} and consists of the superficial rational Γ -inner functions.

The classes $\mathcal{E}_{\nu k}$ and k -extremals, $k \geq 2$

Theorem 5. *If $h \in \mathcal{E}_{\nu k}$, where $\nu \geq 0$ and $k \geq 2$, and h is not superficial then h is k -extremal for $\text{Hol}(\mathbb{D}, \Gamma)$.*

If Conjecture 1 is true then all n -extremals for Γ lie in $\mathcal{E}_{n-2,n}$.

Observation 6. *Let $n \geq 2$. If condition \mathcal{C}_{n-2} suffices for the solvability of n -point Γ -interpolation problems then every rational Γ -inner function h which is n -extremal for $\text{Hol}(\mathbb{D}, \Gamma)$ belongs to $\mathcal{E}_{n-2,n}$.*

Complex geodesics of \mathbb{G} and the classes $\mathcal{E}_{\nu 2}$

We recall that an analytic function $h : \mathbb{D} \rightarrow \Omega$ is called a *complex geodesic of Ω* if there exists an analytic left inverse $g : \Omega \rightarrow \mathbb{D}$ of h .

Example 1. Let $|\beta| < 1$. The function

$$h(\lambda) = (\beta\lambda + \bar{\beta}, \lambda) \tag{15}$$

is not only Γ -inner – it is a *complex geodesic* of \mathbb{G} . The simplest left inverse is the projection $(s, p) \mapsto p$. The domain \mathbb{G} also has complex geodesics of degree 2.

Proposition 4. An analytic function $h : \mathbb{D} \rightarrow \mathbb{G}$ is a complex geodesic of \mathbb{G} if and only if there is an $\omega \in \mathbb{T}$ such that $\Phi_\omega \circ h \in \text{Aut } \mathbb{D}$. Furthermore, every complex geodesic of \mathbb{G} is Γ -inner.

Theorem 7. For $\nu \geq 0$ the set $\mathcal{E}_{\nu 2}$ is the union of the set of superficial rational Γ -inner functions and the set of complex geodesics of \mathbb{G} .

Condition \mathcal{C}_ν and the classes $\mathcal{E}_{\nu k}$

It is clear that $\mathcal{C}_\nu(\lambda, z)$ implies $\mathcal{C}_{\nu-1}(\lambda, z)$ for any Γ -interpolation data $\lambda \mapsto z$. To show that \mathcal{C}_ν is *strictly stronger* than $\mathcal{C}_{\nu-1}$ we need to find Γ -interpolation data

$$\lambda_j \in \mathbb{D} \mapsto z_j = (s_j, p_j) \in \mathbb{G}, \quad 1 \leq j \leq k, \quad (16)$$

such that

(i) for every Blaschke product v of degree at most $\nu - 1$,

$$\lambda_j \mapsto \frac{2v(\lambda_j)p_j - s_j}{2 - v(\lambda_j)s_j}, \quad j = 1, \dots, k, \quad (17)$$

are solvable Nevanlinna-Pick data, but

(ii) there is a Blaschke product m of degree ν such that

$$\lambda_j \mapsto \frac{2m(\lambda_j)p_j - s_j}{2 - m(\lambda_j)s_j}, \quad j = 1, \dots, k, \quad (18)$$

are not solvable Nevanlinna-Pick data.

Condition \mathcal{C}_ν and the classes $\mathcal{E}_{\nu k}$

For distinct points $\lambda_1, \dots, \lambda_k$ in \mathbb{D} , we define

$$\text{Solv}(\lambda_1, \dots, \lambda_k) = \{(f(\lambda_1), \dots, f(\lambda_k)) \in \mathbb{D}^k : f \in \mathcal{S}\},$$

and

$$\text{Unsolv}(\lambda_1, \dots, \lambda_k) = \mathbb{C}^k \setminus \text{Solv}(\lambda_1, \dots, \lambda_k).$$

Thus $w = (w_1, \dots, w_k) \in \text{Solv}(\lambda_1, \dots, \lambda_k)$ if and only if $\lambda_j \mapsto w_j$, $j = 1, \dots, k$, are solvable Nevanlinna-Pick data.

Proposition 5. *Let $\lambda_1, \dots, \lambda_n$ be distinct points in \mathbb{D} .*

(i) *$\text{Solv}(\lambda_1, \dots, \lambda_n)$ is closed in \mathbb{C}^n .*

(ii) *Let $w = (w_1, \dots, w_n) \in \text{Solv}(\lambda_1, \dots, \lambda_n)$. The Nevanlinna-Pick data $\lambda_j \mapsto w_j$, $j = 1, \dots, n$, are extremally solvable if and only if $w \in \partial \text{Solv}(\lambda_1, \dots, \lambda_n)$.*

Proposition 6. *If there exists a nonconstant function $h \in \mathcal{E}_{\nu k} \setminus \mathcal{E}_{\nu-1, k}$ then \mathcal{C}_ν is strictly stronger than $\mathcal{C}_{\nu-1}$. In fact there is a set of Γ -interpolation data $\lambda_j \mapsto z_j$ with k interpolation points which satisfies $\mathcal{C}_{\nu-1}$ but not \mathcal{C}_ν .*

Inequations for the classes $\mathcal{E}_{\nu k}$

In order to apply Proposition 6 we must establish the strict inclusion

$$\mathcal{E}_{\nu-1,k} \subsetneq \mathcal{E}_{\nu,k}$$

for a suitable k .

Proposition 7. *For all $\nu \geq 1$ and $0 < r < 1$, the function*

$$h_\nu(\lambda) = \left(2(1-r) \frac{\lambda^{\nu+1}}{1+r\lambda^{2\nu+1}}, \frac{\lambda(\lambda^{2\nu+1}+r)}{1+r\lambda^{2\nu+1}} \right), \quad \lambda \in \mathbb{D}, \quad (19)$$

belongs to $\mathcal{E}_{\nu,\nu+2} \setminus \mathcal{E}_{\nu-1,\nu+2}$.

Proof. It is clear that h_ν is analytic on Δ . Let $h_\nu = (s, p)$. It is simple to check that $s = \bar{s}p$ on \mathbb{T} , that $|s| \leq 2$ on \mathbb{T} and that $|p(\lambda)| = 1$ on \mathbb{T} . This implies that $h_\nu(\mathbb{T}) \subset b\Gamma$ and that h_ν is Γ -inner.

Let $m(\lambda) = -\lambda^\nu$, so that $m \in \mathcal{B}l_\nu$. It is simple to verify that

$$\Phi \circ (m, h_\nu) = \frac{2mp - s}{2 - ms}(\lambda) = -\lambda^{\nu+1} \in \mathcal{B}l_{\nu+1},$$

and so $h_\nu \in \mathcal{E}_{\nu, \nu+2}$.

To prove that h_ν is not in $\mathcal{E}_{\nu-1, \nu+2}$ we must show that, for all $v \in \mathcal{B}l_{\nu-1}$, the Blaschke product $\Phi \circ (v, h_\nu)$ has degree at least $\nu + 2$. We can do it using cancellations in the functions $\Phi \circ (v, h_\nu)$. It transpires that cancellations can only happen at special points on the unit circle: $\lambda^{2\nu+1} = -1$.

\mathcal{C}_ν is strictly stronger than $\mathcal{C}_{\nu-1}$

Our main theorem follows easily.

Theorem 8. *For all $\nu \geq 1$, the condition \mathcal{C}_ν is strictly stronger than $\mathcal{C}_{\nu-1}$. In fact there is a set of Γ -interpolation data $\lambda_j \mapsto z_j$ with $\nu+2$ interpolation points which satisfies $\mathcal{C}_{\nu-1}$ but not \mathcal{C}_ν .*

As we observed above, \mathcal{C}_0 is necessary and sufficient for solvability of a Γ -interpolation problem when $n = 2$, but a consequence of Theorem 8 is:

Corollary 1. *For all $n \geq 3$, Condition \mathcal{C}_{n-3} does not suffice for the solvability of an n -point Γ -interpolation problem.*

Table of relations between the classes $\mathcal{E}_{\nu k}$

\mathcal{E}_{01}	$\overset{(4,5)}{\subsetneq}$	\mathcal{E}_{02}	$\overset{(1)}{\subsetneq}$	\mathcal{E}_{03}	$\overset{(1)}{\subsetneq}$	\mathcal{E}_{04}	$\overset{(1)}{\subsetneq}$	\mathcal{E}_{05}	$\overset{(1)}{\subsetneq}$	\mathcal{E}_{06}	$\overset{(1)}{\subsetneq}$	\mathcal{E}_{07}	$\subsetneq \dots$
\parallel	$\overset{(4)}{\parallel}$	\parallel	$\overset{(5)}{\parallel}$	$\not\cap$	\cap	\cap	\cap	\cap	$\not\cap$	$\not\cap$	$\not\cap$	$\not\cap$	\dots
\mathcal{E}_{11}	$\overset{(4,5)}{\subsetneq}$	\mathcal{E}_{12}	$\overset{(1)}{\subsetneq}$	\mathcal{E}_{13}	$\overset{(1)}{\subsetneq}$	\mathcal{E}_{14}	$\overset{(1)}{\subsetneq}$	\mathcal{E}_{15}	$\overset{(1)}{\subsetneq}$	\mathcal{E}_{16}	$\overset{(1)}{\subsetneq}$	\mathcal{E}_{17}	$\subsetneq \dots$
\parallel	$\overset{(4)}{\parallel}$	\parallel	\parallel	\cap	$\not\cap$	\cap	\cap	\cap	\cap	\cap	\cap	\cap	\dots
\mathcal{E}_{21}	$\overset{(4,5)}{\subsetneq}$	\mathcal{E}_{22}	$\overset{(1)}{\subsetneq}$	\mathcal{E}_{23}	$\overset{(1)}{\subsetneq}$	\mathcal{E}_{24}	$\overset{(1)}{\subsetneq}$	\mathcal{E}_{25}	$\overset{(1)}{\subsetneq}$	\mathcal{E}_{26}	$\overset{(1)}{\subsetneq}$	\mathcal{E}_{27}	$\subsetneq \dots$
\parallel	$\overset{(4)}{\parallel}$	\parallel	\parallel	\cap	\cap	\cap	$\not\cap$	\cap	\cap	\cap	\cap	\cap	\dots
\mathcal{E}_{31}	$\overset{(4,5)}{\subsetneq}$	\mathcal{E}_{32}	\subset	\mathcal{E}_{33}	$\overset{(1)}{\subsetneq}$	\mathcal{E}_{34}	$\overset{(1)}{\subsetneq}$	\mathcal{E}_{35}	$\overset{(1)}{\subsetneq}$	\mathcal{E}_{36}	$\overset{(1)}{\subsetneq}$	\mathcal{E}_{37}	$\subsetneq \dots$
\parallel	$\overset{(4)}{\parallel}$	\parallel	\parallel	\cap	\cap	\cap	\cap	$\not\cap$	\cap	$\not\cap$	\cap	\cap	\dots
\mathcal{E}_{41}	$\overset{(4,5)}{\subsetneq}$	\mathcal{E}_{42}	\subset	\mathcal{E}_{43}	\subset	\mathcal{E}_{44}	$\overset{(1)}{\subsetneq}$	\mathcal{E}_{45}	$\overset{(1)}{\subsetneq}$	\mathcal{E}_{46}	$\overset{(1)}{\subsetneq}$	\mathcal{E}_{47}	$\subsetneq \dots$
\parallel	$\overset{(4)}{\parallel}$	\parallel	\parallel	\cap	\cap	\cap	\cap	\cap	\cap	\cap	$\not\cap$	$\not\cap$	\dots
\dots	\dots	\dots	\dots	\dots	\dots	\dots	\dots	\dots	\dots	\dots	\dots	\dots	\dots

References

[1] J. Agler, Z.A. Lykova and N. J. Young, Extremal holomorphic maps and the symmetrised bidisc. *Proceedings of the London Mathematical Society*, doi:10.1112/plms/pds049, 2013.

Thank you