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Extremality in Kobayashi’s hyperbolic complex spaces

Pick showed that a function f is n-extremal for the Schur class S = Hol(D,∆)
if and only if f ∈ Bln−1. Here Bln−1 is the set of Blaschke products of degree
at most n− 1.
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if and only if f ∈ Bln−1. Here Bln−1 is the set of Blaschke products of degree
at most n− 1.

A similar notion of extremality, but with n equal to 2, occurs in the theory of
hyperbolic complex spaces introduced by S. Kobayashi in 1977. In this context
one studies the geometry and function theory of a domain Ω ⊂ Cd with the aid
of 2-extremal holomorphic maps from D to Ω.
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A prominent theme in hyperbolic complex geometry is a kind of duality between
Hol(D,Ω) and Hol(Ω,D), typified by the celebrated theorem of L. Lempert 1986,
which in our terminology asserts that if Ω is convex then every 2-extremal map
belonging to Hol(D,Ω) is a complex geodesic of Ω (that is, has an analytic left
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if and only if f ∈ Bln−1. Here Bln−1 is the set of Blaschke products of degree
at most n− 1.

A similar notion of extremality, but with n equal to 2, occurs in the theory of
hyperbolic complex spaces introduced by S. Kobayashi in 1977. In this context
one studies the geometry and function theory of a domain Ω ⊂ Cd with the aid
of 2-extremal holomorphic maps from D to Ω.

A prominent theme in hyperbolic complex geometry is a kind of duality between
Hol(D,Ω) and Hol(Ω,D), typified by the celebrated theorem of L. Lempert 1986,
which in our terminology asserts that if Ω is convex then every 2-extremal map
belonging to Hol(D,Ω) is a complex geodesic of Ω (that is, has an analytic left
inverse).

The notion of n-extremal map makes sense, however, in much greater generality.
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n-extremal holomorphic maps

Definition 1. Let Ω be a domain, let E ⊂ CN , let n ≥ 1, let λ1, . . . , λn be
distinct points in Ω and let z1, . . . , zn ∈ E. We say that the interpolation data

λj 7→ zj : Ω→ E, j = 1, . . . , n,

are extremally solvable if there exists a map h ∈ Hol(Ω, E) such that h(λj) = zj
for j = 1, . . . , n, but, for any open neighbourhood U of the closure of Ω, there is
no f ∈ Hol(U,E) such that f(λj) = zj for j = 1, . . . , n.

Here Hol(Ω, E) is the space of holomorphic maps from a domain Ω to a subset
E.
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for j = 1, . . . , n, but, for any open neighbourhood U of the closure of Ω, there is
no f ∈ Hol(U,E) such that f(λj) = zj for j = 1, . . . , n.

Here Hol(Ω, E) is the space of holomorphic maps from a domain Ω to a subset
E.

We say further that h ∈ Hol(Ω, E) is n-extremal (for Hol(Ω, E)) if, for all
choices of n distinct points λ1, . . . , λn in Ω, the interpolation data

λj 7→ h(λj) : Ω→ E, j = 1, . . . , n,

are extremally solvable.
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There are no 1-extremal holomorphic maps, so we shall always suppose that
n ≥ 2.

In this talk we shall be mainly concerned with n-extremals for Hol(D,Γ) where
the symmetrised bidisc G in C2 is defined to be the set

G def= {(z + w, zw) : z, w ∈ D}

and Γ is the closure of G.
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the symmetrised bidisc G in C2 is defined to be the set

G def= {(z + w, zw) : z, w ∈ D}

and Γ is the closure of G.

Jim Agler and Nicholas Young began the study of the open symmetrised bidisc
G in 1995 with the aim of solving a special case of the µ-synthesis problem of
H∞ control.
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There are no 1-extremal holomorphic maps, so we shall always suppose that
n ≥ 2.

In this talk we shall be mainly concerned with n-extremals for Hol(D,Γ) where
the symmetrised bidisc G in C2 is defined to be the set

G def= {(z + w, zw) : z, w ∈ D}

and Γ is the closure of G.

Jim Agler and Nicholas Young began the study of the open symmetrised bidisc
G in 1995 with the aim of solving a special case of the µ-synthesis problem of
H∞ control.

They proved that the 2-extremals for Hol(D,G) coincide with the complex
geodesics of G.

Note that G is not isomorphic to any convex domain (Costara).
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Interpolation in Hol(D,Γ)

The (finite) interpolation problem for Hol(D,Γ) is the following:

Given Γ-interpolation data

λj 7→ zj, 1 ≤ j ≤ n, (1)

where λ1, . . . , λn are n distinct points in the open unit disc D and z1, . . . , zn
are n points in Γ, find if possible an analytic function

h : D→ Γ such that h(λj) = zj for j = 1, . . . , n. (2)
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Given Γ-interpolation data

λj 7→ zj, 1 ≤ j ≤ n, (1)

where λ1, . . . , λn are n distinct points in the open unit disc D and z1, . . . , zn
are n points in Γ, find if possible an analytic function

h : D→ Γ such that h(λj) = zj for j = 1, . . . , n. (2)

If Γ is replaced by the closed unit disc ∆ then we obtain the classical
Nevanlinna-Pick problem, for which there is an extensive theory that furnishes
among many other things a simple criterion for the existence of a solution h
and an elegant parametrisation of all solutions when they exist.
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There is a satisfactory analytic theory of the problem (2) in the case that the
number of interpolation points n is 2, but we are still far from understanding
the problem for a general n ∈ N.
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Condition Cν

Here we introduce a sequence of necessary conditions for the solvability of an n-
point Γ-interpolation problem and put forward a conjecture about sufficiency.
We will show here that these conditions are of strictly increasing strength.

Definition 2. Corresponding to Γ-interpolation data

λj ∈ D 7→ zj = (sj, pj) ∈ G, 1 ≤ j ≤ n, (3)

we introduce:

Condition Cν(λ, z)

For every Blaschke product υ of degree at most ν, the Nevanlinna-Pick data

λj 7→ Φ(υ(λj), zj) =
2υ(λj)pj − sj
2− υ(λj)sj

, j = 1, . . . , n, (4)

are solvable.
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Definition 3. The function Φ is defined for (z, s, p) ∈ C3 such that zs 6= 2 by

Φ(z, s, p) =
2zp− s
2− zs

.

We shall write Φz(s, p) as a synonym for Φ(z, s, p).
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The Γ-interpolation conjecture

Conjecture 1. Condition Cn−2 is necessary and sufficient for the solvability of
an n-point Γ-interpolation problem.

Conjecture 1 is true in the case n = 2. We have no evidence for n ≥ 3 and we
are open minded as to whether or not it is likely to be true for all n.
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The Γ-interpolation conjecture

Conjecture 1. Condition Cn−2 is necessary and sufficient for the solvability of
an n-point Γ-interpolation problem.

Conjecture 1 is true in the case n = 2. We have no evidence for n ≥ 3 and we
are open minded as to whether or not it is likely to be true for all n.

Observe that Pick’s Theorem gives us an easily-checked criterion for the
solvability of a Nevanlinna-Pick problem.

Proposition 1. If λj 7→ zj = (sj, pj), 1 ≤ j ≤ n, are interpolation data for
Γ then condition Cν(λ1, . . . , λn, z1, . . . , zn) holds if and only if, for every Blaschke
product υ of degree at most ν,"

1− υ(λi)pip̄jυ(λj)− 1
2υ(λi)(si − pis̄j)− 1

2(s̄j − p̄jsi)υ(λj)− 1
4(1− υ(λi)ῡ(λj))sis̄j

1− λiλj

#n
i,j=1

(5)

is positive.
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Cν are necessary

The conditions Cν are all necessary for the solvability of a Γ-interpolation
problem.

Theorem 1. Let λ1, . . . , λn be distinct points in D and let zj ∈ G for
j = 1, 2, . . . , n.

If there exists an analytic function

h : D→ Γ

such that h(λj) = zj for j = 1, 2, . . . , n then, for any function υ in the Schur
class S = Hol(D,∆) , the Nevanlinna-Pick data

λj 7→ Φ(υ(λj), zj), j = 1, . . . , n, (6)

are solvable. In particular, the condition Cν(λ, z) holds for every non-negative
integer ν.
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Extremality in Condition Cν

To prove that condition Cν suffices for the solvability of an n-point Nevanlinna-
Pick problem for Γ it is enough to prove it in the case that Cν holds extremally.
Let us make this notion precise.

Recall that Γ-interpolation data λj 7→ zj, 1 ≤ j ≤ n, are defined to satisfy
condition Cν if, for every Blaschke product υ ∈ Blν of degree at most ν, the
data

λj 7→ Φ(υ(λj), zj), 1 ≤ j ≤ n, (7)

are solvable for the classical Nevanlinna-Pick problem. If, in addition, there
exists m ∈ Blν such that the data

λj 7→ Φ(m(λj), zj), 1 ≤ j ≤ n,

are extremally solvable Nevanlinna-Pick data, then we shall say that the data
λj 7→ zj, 1 ≤ j ≤ n, satisfy Cν extremally, or the condition Cν(λ, z) holds
extremally.
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It is well known that Pick’s criterion for the solvability of a classical
Nevanlinna-Pick problem is expressible by an operator norm inequality; hence
condition Cν can be expressed this way. Let

M = span {Kλ1, . . . ,Kλn} ⊂ H2, (8)

where K is the Szegő kernel. Consider Γ-interpolation data

λj 7→ zj, 1 ≤ j ≤ n,

and introduce, for any function υ in the Schur class, the operator X(υ) onM
given by

X(υ)Kλj = Φ(υ(λj), zj)Kλj, 1 ≤ j ≤ n. (9)

Pick’s Theorem, as reformulated by Sarason, asserts that the Nevanlinna-Pick
data

λj 7→ Φ(υ(λj), zj), 1 ≤ j ≤ n, (10)

are solvable if and only if the operator X(υ) is a contraction. Furthermore, the
Nevanlinna-Pick data (10) are extremally solvable if and only if ‖X(υ)‖ = 1.
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Thus Cν(λ, z) holds if and only if

sup
υ∈Blν

‖X(υ)‖ ≤ 1. (11)

Proposition 2. For any Γ-interpolation data λj 7→ zj, 1 ≤ j ≤ n, and ν ≥ 0,
the following conditions are equivalent.

(i) Cν(λ, z) holds extremally;

(ii) supυ∈Blν ‖X(υ)‖ = 1;

(iii) Cν(λ, z) holds and there exist m ∈ Blν and q ∈ Bln−1 such that

Φ(m(λj), zj) = q(λj), j = 1, . . . , n, (12)

Moreover, when condition (iii) is satisfied for some m ∈ Blν, there is a unique
q ∈ Bln−1 such that equations (12) hold. If, furthermore, the Γ-interpolation
data λj 7→ zj, 1 ≤ j ≤ n, are solvable by an analytic function h = (s, p) : D→ Γ,
then

2mp− s
2−ms

= q. (13)
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An auxiliary extremal for the condition Cν(λ, z)

We shall say that any Blaschke product m with the properties described in
Proposition 2(iii) is an auxiliary extremal for the condition Cν(λ, z).

Examples 2. Let λ1, λ2, λ3 be any three distinct points in D and let
0 < r < 1. In each of the following examples h is an analytic function from D
to G and the data λj 7→ h(λj), 1 ≤ j ≤ 3, satisfy C1 extremally.

(1) Let h(λ) = (2rλ, λ2). Every degree 0 inner function m ∈ T is an auxiliary
extremal for C1; there is no auxiliary extremal of degree 1.

(2) Let h(λ) = (r(1 + λ), λ). Every m ∈ Bl1 is an auxiliary extremal for C1.
The corresponding q has degree d(m) + 1.
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An auxiliary extremal for the condition Cν(λ, z)

(3) Let

h(λ) =
(

2(1− r) λ2

1 + rλ3
,
λ(λ3 + r)
1 + rλ3

)
, λ ∈ D.

The function m(λ) = −λ is an auxiliary extremal for C1; there is no auxiliary
extremal of degree 0. Here q(λ) = −λ2.

(4) Let f be a Blaschke product of degree 1 or 2 and let h = (2f, f2). Every
m ∈ Bl1 is an auxiliary extremal and, for every m, we have q = −f .
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Γ-inner functions

Definition 4. A Γ-inner function is an analytic function h : D→ Γ such that
the radial limit

lim
r→1−

h(rλ) ∈ bΓ (14)

for almost all λ ∈ T.

Here bΓ is the distinguished boundary of G (or Γ). It is the symmetrisation
of the 2-torus:

bΓ = {(z + w, zw) : |z| = |w| = 1}.

By Fatou’s Theorem, the radial limit (14) exists for almost all λ ∈ T with
respect to Lebesgue measure.

Observe that, if h = (h1, h2) is a Γ-inner function, then h2 is an inner function
on D in the conventional sense.
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The classes Eνk
Proposition 2 tells us that if h ∈ Hol(D,Γ) and λ1, . . . , λn are distinct points
in D, then the Γ-interpolation data λj 7→ h(λj) satisfy Cν(λ, h(λ)) extremally
if and only if there exists m ∈ Blν such that Φ ◦ (m,h) ∈ Bln−1. This leads us
to introduce the following classes of rational Γ-inner functions.

Definition 5. For ν ≥ 0, k ≥ 1 we say that the function h is in Eνk if
h = (s, p) ∈ Hol(D,Γ) is rational and there exists m ∈ Blν such that

2mp− s
2−ms

∈ Blk−1.

Remark 3. It is obvious that, for every ν ≥ 0,

Eν1 ⊂ Eν2 ⊂ · · · ⊂ Eνk ⊂ Eν,k+1 ⊂ . . . ,

and, for every k ≥ 1,

E0k ⊂ E1k ⊂ · · · ⊂ Eνk ⊂ Eν+1,k ⊂ . . . .
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Superficial Γ-inner functions and the classes Eν1

For any inner function ϕ and ω ∈ T the function h = (ω + ϕ, ωϕ) is Γ-inner,
and has the property that h(λ) lies in the topological boundary ∂Γ of Γ for
all λ ∈ D.

Recall that (s, p) ∈ ∂Γ ⇔ |s| ≤ 2 and |s− s̄p| = 1− |p|2

⇔ there exist z ∈ T and w ∈ ∆ such that s = z + w, p = zw.

Definition 6. A function h ∈ Hol(D,Γ) is superficial if h(D) ⊂ ∂Γ.

The image of a function in Hol(D,Γ) is either contained in or disjoint from
∂Γ.

Lemma 1. If h ∈ Hol(D,Γ) is not superficial then h(D) ⊂ G.

Proposition 3. A Γ-inner function h is superficial if and only if there is an
ω ∈ T and an inner function p such that h = (ωp+ ω̄, p).

Theorem 4. For every ν ≥ 1, the class Eν1 is equal to E01 and consists of the
superficial rational Γ-inner functions.
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The classes Eνk and k-extremals, k ≥ 2

Theorem 5. If h ∈ Eνk, where ν ≥ 0 and k ≥ 2, and h is not superficial then
h is k-extremal for Hol(D,Γ).

If Conjecture 1 is true then all n-extremals for Γ lie in En−2,n.

Observation 6. Let n ≥ 2. If condition Cn−2 suffices for the solvability of
n-point Γ-interpolation problems then every rational Γ-inner function h which is
n-extremal for Hol(D,Γ) belongs to En−2,n.
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Complex geodesics of G and the classes Eν2

We recall that an analytic function h : D → Ω is called a complex geodesic of
Ω if there exists an analytic left inverse g : Ω→ D of h.

Example 1. Let |β| < 1. The function

h(λ) = (βλ+ β̄, λ) (15)

is not only Γ-inner – it is a complex geodesic of G. The simplest left inverse is
the projection (s, p) 7→ p. The domain G also has complex geodesics of degree 2.

Proposition 4. An analytic function h : D → G is a complex geodesic of G
if and only if there is an ω ∈ T such that Φω ◦ h ∈ Aut D. Furthermore, every
complex geodesic of G is Γ-inner.

Theorem 7. For ν ≥ 0 the set Eν2 is the union of the set of superficial
rational Γ-inner functions and the set of complex geodesics of G.
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Condition Cν and the classes Eνk

It is clear that Cν(λ, z) implies Cν−1(λ, z) for any Γ-interpolation data λ 7→ z.
To show that Cν is strictly stronger than Cν−1 we need to find Γ-interpolation
data

λj ∈ D 7→ zj = (sj, pj) ∈ G, 1 ≤ j ≤ k, (16)

such that
(i) for every Blaschke product υ of degree at most ν − 1,

λj 7→
2υ(λj)pj − sj
2− υ(λj)sj

, j = 1, . . . , k, (17)

are solvable Nevanlinna-Pick data, but
(ii) there is a Blaschke product m of degree ν such that

λj 7→
2m(λj)pj − sj
2−m(λj)sj

, j = 1, . . . , k, (18)

are not solvable Nevanlinna-Pick data.
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Condition Cν and the classes Eνk
For distinct points λ1, . . . , λk in D, we define

Solv(λ1, . . . , λk) = {(f(λ1), . . . , f(λk)) ∈ Dk : f ∈ S},

and
Unsolv(λ1, . . . , λk) = Ck \ Solv(λ1, . . . , λk).

Thus w = (w1, . . . , wk) ∈ Solv(λ1, . . . , λk) if and only if λj 7→ wj, j = 1, . . . , k,
are solvable Nevanlinna-Pick data.

Proposition 5. Let λ1, . . . , λn be distinct points in D.

(i) Solv(λ1, . . . , λn) is closed in Cn.

(ii) Let w = (w1, . . . , wn) ∈ Solv(λ1, . . . , λn). The Nevanlinna-Pick data λj 7→
wj, j = 1, . . . , n, are extremally solvable if and only if w ∈ ∂Solv(λ1, . . . , λn).

Proposition 6. If there exists a nonconstant function h ∈ Eνk \ Eν−1,k then
Cν is strictly stronger than Cν−1. In fact there is a set of Γ-interpolation data
λj 7→ zj with k interpolation points which satisfies Cν−1 but not Cν.
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Inequations for the classes Eνk

In order to apply Proposition 6 we must establish the strict inclusion

Eν−1,k ( Eν,k

for a suitable k.

Proposition 7. For all ν ≥ 1 and 0 < r < 1, the function

hν(λ) =
(

2(1− r) λν+1

1 + rλ2ν+1
,
λ(λ2ν+1 + r)
1 + rλ2ν+1

)
, λ ∈ D, (19)

belongs to Eν,ν+2 \ Eν−1,ν+2.

Proof. It is clear that hν is analytic on ∆. Let hν = (s, p). It is simple to
check that s = s̄p on T, that |s| ≤ 2 on T and that |p(λ)| = 1 on T. This
implies that hν(T) ⊂ bΓ and that hν is Γ-inner.
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Let m(λ) = −λν, so that m ∈ Blν. It is simple to verify that

Φ ◦ (m,hν) =
2mp− s
2−ms

(λ) = −λν+1 ∈ Blν+1,

and so hν ∈ Eν,ν+2.

To prove that hν is not in Eν−1,ν+2 we must show that, for all υ ∈ Blν−1, the
Blaschke product Φ ◦ (υ, hν) has degree at least ν + 2. We can do it using
cancellations in the functions Φ ◦ (υ, hν). It transpires that cancellations can
only happen at special points on the unit circle: λ2ν+1 = −1.
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Cν is strictly stronger than Cν−1

Our main theorem follows easily.

Theorem 8. For all ν ≥ 1, the condition Cν is strictly stronger than Cν−1. In
fact there is a set of Γ-interpolation data λj 7→ zj with ν + 2 interpolation points
which satisfies Cν−1 but not Cν.

As we observed above, C0 is necessary and sufficient for solvability of a Γ-
interpolation problem when n = 2, but a consequence of Theorem 8 is:

Corollary 1. For all n ≥ 3, Condition Cn−3 does not suffice for the solvability
of an n-point Γ-interpolation problem.
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