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1. Cyclic Elements

« Cyclic elements of a family of operators
©={ T } a family of operators on X, T:X—X
G= Semi-Group(©)

DEFINITION: x in X'is cyclic if Span(Gx)= X.
CYC(G) — the set of all G-cyclic elements

o know CYC(G) — a step to Lat(G).



The Hardy space H?(n) of the Disco= {z€c: |z| <1}:
Hp)= {f= ¥ f)": |fla= X If(n)]° < oo},
nez; nez;
T is the shift operator Tf = 2f, G = {T"},c,,-
THEOREM (V.I.Smirnov,1932 - A.Beurling,1949):
f € H? is cyclic & f is “outer”: log|f(0)| = /rlog|f|dm.

All known proofs depend on the canonical factorization f =

finn : fout-



The Hilbert multi-disc o5°

e D. Hilbert (1909) defined an infinite-dimensional multi-disc n5°,

= {{= (k=1 €l |G| < 1(VE)},

and sketched a holomorphic function theory on n3°.
e The Hardy space on n3°,

HeP)= (F= 5 aF)@: |FIi= ¥ |ealP)F< oo},
Q€!+ M) QGM(&)

z4(00) = Ug> z’i all finitely supported sequences of nonnegative integers
a=(o,...,as0,0,..), and ¢® = (7*...% (¢ € o).



e The multiplication (monomial) semigroupe, M; = ((%)acz, (o)

¢t f(6) — ¢ f(€), Cens.

e Lat(M;) = the lattice of closed M -invariant subspaces of
H*(o3°).
o F € H?*(pY) is M,-cyclic iff Span(M;F) = H?*(s5).

e EXAMPLES:

1) (trivial) F = 1 € CYC(M;); 2) (obvious) F € CYC(M;) if
F € H*(») and 1/F € H°°(ng°),

3) (simple) F({) = e:vp( 1) is not cyclic.



e Describe CYC(M;).
e Describe Lat(M;).

Remark: clearly, F € CYC(M;) & (F ¢ E VE € Lat(M;), E 7
H65)).



(1) VA € p¥°
F +— F(A) is BDD on H?*(0Y)
(2) The reproducing kernel of H*(p3°) is an ” Euler product”

1 1
kx¢) = ¥ X = —, k|32 = < 0.
= EXC= Iy W= 1117

Remark: k), € H*(0°) & X € I

(3) H*(»™) ¢ H?*(®) (isometrically), and F € H?*(p™) is
cyclic in H*(™) & F € CYC(M;).

(4) Similar is true for HZ(0°) = {F € H?*(05°) : Fourier spectrum
of F is in o} for every "half-group” o C z;(cc). EXAMPLE:
o= «a-z;, where a € z,(c0).






THEOREM 1: IF (Je > 0 s.t. F'* € H*(oY¥), 1/F° € H*(oY))
THEN F € CYC(M,).

Proof. - SOME PROPERTIES OF H”(p3") SPACES FOR p > 2 WILL
BE USED, IN PARTICULAR H”(p) C H%0p3) FOR p > ¢, AND
POLYNOMIALS IN (", a € z, (00) ARE DENSE IN H?(n3").

WLOG e = 1/N, N entire; let v = N 4= 2(1(“).

THEN 1/F" € H% and 3 poly py. s.t. limy||F~" —pi|, = 0. By Holder

s 1 enl/14e 1
| == piFlly = 1F (37— Pl < NF 5 Nl — pill, — 0.

—

HENCE F'=7" € E = Span;»(M:F). NEXT, F1= € E, etc., by

induction 1 € F. i
CONCLUSION: F'= H=(1p"). 1

1~41 110N e 1140 4 ¢4
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e REMARK - anecessary condition: '€ CYC(M;) = F(() #
0 V¢ € .

THEOREM 2: IF F' € Hol((1 +¢)p™) AND F(() # 0 V( € n*
THEN F € CYC(M;).

Proof. - WE WILL CHECK CONDITIONS OF THEOREM 1: F' &
H”(p3*) 18 oBVIOUS (¥p).

LEMMA (the zero set of F'): let Z(F) = {(en”: F(() =
0}, then 3 0 C {1,2,....,m} s.t.

!/

Z(F)=Axno’y, AC1”

where ¢’ = {1,2,...,m}\c and A is a finite union of analytic
manifolds of real dimensions strictly less than card(o’).
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Applying S.Lojaciewicz’s theorem for F: dN, C) > 0 s.t.
IF(Q)] = Ci(dist(¢, Z(F)))Y = Ci1(dist(Cr, A)Y

for every ¢ € ", and 3Cs > 0 s.t. dist(r(,, A) > Cs - dist({y, A)
(0<r<1,( €1). Let d= card(c’'), € > 0 s.t. Ne <1, then

AdAn(Q) _ dAa(Cy)
/"" |F(1‘(')|e - /'”' (dist((yr, A)) = %
since A is C* diffeomorphic to H = {z = (z,...,25) : 7, =

0} ¢ =% and with ( ~ = = (21, ... Zd), dist(Gor, A) 2 ez,
C- J]z,|<l,VJ_]_)V'd< Q.

|z |

It follows that 1/F € H(s™). By Theorem 1, F is cyclic. g






COROLLARY 1: Reproducing kernels k), A € p3*, are cyclic.

Indeed,
o (obviously) k\(¢) = TI F)\,((.) where F,(2) = (1 —az)"" (a,z €p);

s>1
o [|Fulllme = 1+ [pa/2*(1+0(1)) as a — 0 (Yp < o0, and hence
o Ly, 1/k,\ € H”(p3") for every A, A € p3° and Vp < oo. B

COROLLARY 2: F € H*(0Y), ReF'(() > 0 (¢ €p¥) = F is
cyclic. In particular, F'= 1+ f, ||f]|~ < 1, is cyclic. &

Rem: Corollaries are equivalent to Hedenmalm, Lindquist, and Seip’s

results (1997) (here with new and easier proofs).
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8. Why it is important, tenthly?

(10) Because it is equivalent to the dilation f
(nx), n=1,2,... completeness problem
(DCP)

(11) Beacuse a partial case of the DCP is
equivalent to the Riemann hypothesis



DILATION COMPLETENESS PROBLEM: To describe func-
tions f € LP(0,00) such that

spangppy)(f(nz): n=1,2,3,...) = LF(0,1).

EXAMPLES:

(1) Functions with COMPLETE dilations: f= Sin(rz); f =
e f=e* 0<a<l;

(2) Functions with INCOMPLETE dilations: f = Sin(2rz);
f=e* a>1;

(3) Riemann Hypothesis is equivalent to the DCP for f(z) =
%— [%], z > 0 (B.Nyman 1950; L.Baez-Duarte 2003).



The FIRST STEP TO THE DCP - a PERIODIC DCP raised
by Wintner (1944) and Beurling (1945), i.e. the question
when f(nz), n=1,2,... are complete in L*(0,1) if

f is odd and 2-periodic.

- Aurel Wintner, 1944, in Amer. J. Math., motivated by analytical
problems arising from the Eratosthenes sieve method.

- Arne Beurling, 1945, in a seminar talk at Uppsala University,
whithout a declared motivation.



e The DILATIONS on L2;(z/2z) FORM an OPERATOR
SEMIGROUP:

fel2y(-1,1) = f= Y bSin(rkz), ¥ |be|”* < .
k=1 k=1

HENCE f(nz) = (Tuf)(z), where (T) acts on an ONB ¢ =
Sin(mkz) as Ther = énk.

e CHANGING the BASIS: (¢*7),, in the Hardy space HZ(n),

He)= (/= Ta: Ifli= % laP < oo,
we get a semigroup of isometries -
T.f(2) = f(2"), f € H3(v).
e Now, the Periodic DCP is TO FIND CYCLIC VECTORS
f of (T}):
spang2(T,f - n>1)= Hj(n).



A unitary equivalence between HZ(p) and H?*(n$°):

U: f=YX f(n)z" +—s UFf(() = Py f(n)¢*™, ¢ € o5,

n>1 =
a(n) = (ay, .., as,0,...) is defined by the prime decomposition

—
n= pp..ps, a; €z,.

LEMMA. (1) U is unitary H3(v) — H?*(0°) and transforms (Ty,)
into a multiplication semigroup M; = (Mca)aes, (0):

(UTRUNS(Q) = ¢ () (€ €0, f € H(35)).

(2) E € Lat(T,) & UE € Lat(M;); a function f € Hj is (Tp)-cyclic
iff U f 1s M,-cyclic.



10. Periodic DCP (cnd)

« Conclusion: the following three problems
are now equivalent:

(1) MC cyclicity on the Hilbert multidisc
(2) Completeness of f(z"), n=1,2,... in H*D)

(3) Completeness of g(nx), n=1,2,... In L?
(0,1), with 2-periodic odd extention of g



An Abridged History of the Periodic DCP

e A.Wintner, 1944: f= 3 n™%2", Re(s) > 1/2 is (Ty)-cyclic.
n>1

e A.Beurling, 1945: f is (Ty)-cyclic = Uf({) # 0 for ¢ € n5°.

e R.Gosselin and J.Neuwirth, 1968,

e J.Ginsberg, J.Neuwirth, and D.Newman, 1970: f a polyno-
mial, then f cyclic & U f({) # 0 for ¢ € n5°.

e H.Hedenmalm, P.Lindquist, and K.Seip, 1997-1998: [ =
z+ Y ay2", n);j2|a,,| < 1= fiscyclic; f = xp21 x(n)2" is cyclic,

n>2 =
where y stands for a bounded character of .

Remark: As it is shown all these results follow from Theorem 1 above.



(1) Is Theorem 1 sharp?

Whether there exists a NON-CYCLIC F € H?*(n)°) such
that 1/F € H*(s5°)?

COMMENTS:
o F € H2(s), 1/F € H2(o) (obviously) implies that F is CYCLIC.
e It is plausible that for H?*(»?) there is a counterexample:

HINT: if f(0) = 0 and ¢ = f’ € L%(») (the Bergman space
on o) then
a) p — ! (wu),: g(z) = F € H?*1? (isometric embedding
Li(v) — H?*(v%),
b) if F is cyclic in H*(»?), then g is cyclic in L2(n),
c) there exists p € L2(n), 1/ € L2(n) which is NOT CYCLIC
(A.Borichev and H.Hedenmalm)




(2) V.Ya. Kozlov’s problem (1950):

Let 0 < 8 < 1 and fz € Lgg(—1,1), f5l(0,1) = Xx(p) 2-
periodically extended on =. For which values of 3
fg(nz), n=1,2, ...
are complete in LZ;,(—1,1)7

Known cases (claimed V.Ya.Kozlov, Dokl. URSS, 73(1950),
441-444, no proofs):

CYCLIC:

1) 3 =1 (equivalent to reproducing kernel ky, A = (0,1/p2,1/p3,...))
2) B= 1/2,2/3;

NON-CYCLIC:

3) =1/3 (and a neighborhood);

4) = q/p, p prime p # 2, q odd, and tan*(2r3) < 1/p.



THE END

THANK YOU!



