Cyclic Elements on the Hilbert Multidisc

Nikolai Nikolski University Bordeaux 1/ Steklov Inst. Math., St.Petersburg

1. Cyclic Elements

• Cyclic elements of a family of operators $\Theta = \{ T \}$ a family of operators on X, T:X \rightarrow X G= Semi-Group(Θ)

DEFINITION: x in X is cyclic if Span(Gx)= X. CYC(G) – the set of all G-cyclic elements

To know CYC(G) - a step to Lat(G).

2. Example (classical)

The Hardy space $H^2(\mathbf{D})$ of the Disc $\mathbf{D} = \{z \in \mathbf{c} : |z| < 1\}$:

$$H^{2}(\mathbf{D}) = \{ f = \sum_{n \in \mathbf{z}_{+}} \hat{f}(n) z^{n} : \|f\|_{2}^{2} = \sum_{n \in \mathbf{z}_{+}} |\hat{f}(n)|^{2} < \infty \},$$

T is the shift operator Tf = zf, $G = \{T^n\}_{n \in \mathbf{z}_+}$.

THEOREM (V.I.Smirnov, 1932 - A.Beurling, 1949):

 $f \in H^2$ is cyclic $\Leftrightarrow f$ is "outer": $log|f(0)| = \int log|f|dm$.

All known proofs depend on the canonical factorization $f = f_{inn} \cdot f_{out}$.

3. The Framework of this Talk

The Hilbert multi-disc D_2^{∞}

D. Hilbert (1909) defined an infinite-dimensional multi-disc n[∞]₂

$$\mathbf{D}_{2}^{\infty} = \{ \zeta = (\zeta_{k})_{k \ge 1} \in l^{2} : |\zeta_{k}| < 1 \; (\forall k) \},\$$

and sketched a holomorphic function theory on \mathbb{D}_2^{∞} .

The Hardy space on D[∞]₂

$$H^2(\mathbf{n}_2^\infty) \coloneqq \{F = \sum_{\alpha \in \mathbf{z}_+(\infty)} c_\alpha(F) \zeta^\alpha : \|F\|_2^2 = \sum_{\alpha \in \mathbf{z}_+(\infty)} |c_\alpha(F)|^2 < \infty\},\$$

 $z_+(\infty) = \bigcup_{k \ge 1} z_+^k$ all finitely supported sequences of nonnegative integers $\alpha = (\alpha_1, ..., \alpha_s, 0, 0, ...)$, and $\zeta^{\alpha} = \zeta_1^{\alpha_1} ... \zeta_s^{\alpha_s}$ ($\zeta \in \mathbb{D}_2^{\infty}$).

3. The Framework of this Talk (cnd)

• The multiplication (monomial) semigroupe, $M_{\zeta} = (\zeta^{\alpha})_{\alpha \in \mathbf{z}_{+}(\infty)}$,

$$\zeta^{\alpha}:\ f(\zeta) \longrightarrow \zeta^{\alpha} f(\zeta),\ \zeta \in \mathrm{D}_{2}^{\infty}.$$

• $Lat(M_{\zeta})$ = the lattice of closed M_{ζ} -invariant subspaces of $H^2(\mathbb{n}_2^{\infty})$.

• $F \in H^2(\mathbb{D}_2^{\infty})$ is M_{ζ} -cyclic iff $Span(M_{\zeta}F) = H^2(\mathbb{D}_2^{\infty})$.

• EXAMPLES:

1) (trivial) $F = 1 \in CYC(M_{\zeta})$; 2) (obvious) $F \in CYC(M_{\zeta})$ if $F \in H^2(\mathbb{D}_2^{\infty})$ and $1/F \in H^{\infty}(\mathbb{D}_2^{\infty})$, 3) (simple) $F(\zeta) = exp(\frac{\zeta_1+1}{\zeta_1-1})$ is not cyclic.

4. The Problem

- Describe $CYC(M_{\zeta})$.
- Describe $Lat(M_{\zeta})$.

Remark: clearly, $F \in CYC(M_{\zeta}) \Leftrightarrow (F \notin E \forall E \in Lat(M_{\zeta}), E \neq H^2(\mathbb{D}_2^{\infty})).$

5. First Observations

(1) ∀λ ∈ n₂[∞]
F → F(λ) is BDD on H²(n₂[∞])
(2) The reproducing kernel of H²(n₂[∞]) is an "Euler product"

$$k_{\lambda}(\zeta) = \sum_{\alpha \ge 0} \overline{\lambda}^{\alpha} \zeta^{\alpha} = \prod_{j \ge 1} \frac{1}{1 - \overline{\lambda}_j \zeta_j}, \ \|k_{\lambda}\|_{H^2}^2 = \prod_{j \ge 1} \frac{1}{1 - |\lambda_j|^2} < \infty.$$

Remark: $k_{\lambda} \in H^{\infty}(\mathbb{D}_{2}^{\infty}) \Leftrightarrow \lambda \in l^{1}$.

(3) $H^2(\mathbb{D}^m) \subset H^2(\mathbb{D}_2^\infty)$ (isometrically), and $F \in H^2(\mathbb{D}^m)$ is cyclic in $H^2(\mathbb{D}^m) \Leftrightarrow F \in CYC(M_{\zeta})$.

(4) Similar is true for $H^2_{\sigma}(\mathbb{D}^{\infty}_2) = \{F \in H^2(\mathbb{D}^{\infty}_2) : Fourier spectrum of F is in \sigma\}$ for every "half-group" $\sigma \subset \mathbb{Z}_+(\infty)$. EXAMPLE: $\sigma = \alpha \cdot \mathbb{Z}_+$, where $\alpha \in \mathbb{Z}_+(\infty)$.

6. Results

THEOREM 1: IF $(\exists \epsilon > 0 \text{ s.t. } F^{1+\epsilon} \in H^2(\mathbb{D}_2^{\infty}), 1/F^{\epsilon} \in H^2(\mathbb{D}_2^{\infty}))$ **THEN** $F \in CYC(M_{\zeta})$.

Proof. - Some properties of $H^p(\mathbb{D}_2^{\infty})$ spaces for $p \geq 2$ will be used, in particular $H^p(\mathbb{D}_2^{\infty}) \subset H^q(\mathbb{D}_2^{\infty})$ for p > q, and polynomials in ζ^{α} , $\alpha \in \mathbb{Z}_+(\infty)$ are dense in $H^p(\mathbb{D}_2^{\infty})$.

WLOG $\epsilon = 1/N$, N entire; let $\gamma = \frac{\epsilon}{N(1+\epsilon)}$, $q = \frac{2(1+\epsilon)}{\epsilon}$. THEN $1/F^{\gamma} \in H^{q}$ and $\exists poly \ p_{k}$ s.t. $\lim_{k} \|F^{-\gamma} - p_{k}\|_{q} = 0$. By Hölder

$$\|F^{1-\gamma} - p_k F\|_2 = \|F(\frac{1}{F^{\gamma}} - p_k)\|_2 \le \|F^{1+\epsilon}\|_2^{1/1+\epsilon} \|\frac{1}{F^{\gamma}} - p_k\|_q \longrightarrow 0.$$

HENCE $F^{1-\gamma} \in E =: Span_{H^2}(M_{\zeta}F)$. NEXT, $F^{1-2\gamma} \in E$, etc., by induction $1 \in E$. CONCLUSION: $E = H^2(\mathbb{D}_2^{\infty})$. • **REMARK - a necessary condition:** $F \in CYC(M_{\zeta}) \Rightarrow F(\zeta) \neq 0 \quad \forall \zeta \in \mathbb{D}_2^{\infty}$.

THEOREM 2: IF $F \in Hol((1 + \epsilon)\mathbb{D}^m)$ AND $F(\zeta) \neq 0 \ \forall \zeta \in \mathbb{D}_2^\infty$ THEN $F \in CYC(M_{\zeta})$.

Proof. - WE WILL CHECK CONDITIONS OF THEOREM 1: $F \in H^p(\mathbb{D}_2^\infty)$ is obvious $(\forall p)$.

LEMMA (the zero set of F): let $Z(F) =: \{\zeta \in \mathbb{D}^m : F(\zeta) = 0\}$, then $\exists \sigma \subset \{1, 2, ..., m\}$ s.t.

$$Z(F) = A \times \mathbb{D}^{\sigma}, \ A \subset \mathbb{T}^{\sigma'}$$

where $\sigma' = \{1, 2, ..., m\} \setminus \sigma$ and A is a finite union of analytic manifolds of real dimensions strictly less than $card(\sigma')$.

Proof of Theorem 2 (cnd)

Applying S.Lojaciewicz's theorem for $F: \exists N, C_1 > 0$ s.t.

$$|F(\zeta)| \ge C_1(dist(\zeta, Z(F)))^N = C_1 1(dist(\zeta_{\sigma'}, A))^N$$

for every
$$\zeta \in \tau^m$$
, and $\exists C_2 > 0$ s.t. $dist(r\zeta_{\sigma'}, A) \ge C_2 \cdot dist(\zeta_{\sigma'}, A)$
 $(0 < r < 1, \zeta_{\sigma'} \in \tau^{\sigma'})$. Let $d = card(\sigma'), \epsilon > 0$ s.t. $N\epsilon < 1$, then
 $\int_{\tau^m} \frac{d\Lambda_m(\zeta)}{|F(r\zeta)|^{\epsilon}} \le C_3 \int_{\tau^{\sigma'}} \frac{d\Lambda_d(\zeta_{\sigma'})}{(dist(\zeta_{\sigma'}, A))^{N\epsilon}} < \infty$,

since A is C^{∞} diffeomorphic to $H = \{x = (x_1, ..., x_d) : x_1 = 0\} \subset \mathbb{R}^d$, and with $\zeta_{\sigma'} \sim x = (x_1, ..., x_d), dist(\zeta_{\sigma'}, A) \geq c|x_1|, c \cdot \int_{|x_j| < 1, \forall j} \frac{dx_1 ... dx_d}{|x_1|^{N\epsilon}} < \infty.$

It follows that $1/F \in H^{\epsilon}(\mathbb{D}^m)$. By Theorem 1, F is cyclic.

7. Two Corollaries

COROLLARY 1: Reproducing kernels k_{λ} , $\lambda \in \mathbb{D}_2^{\infty}$, are cyclic.

Indeed,

- (obviously) $k_{\lambda}(\zeta) = \prod_{s \ge 1} F_{\lambda_s}(\zeta_s)$ where $F_a(z) = (1 \overline{a}z)^{-1} (a, z \in D);$
- $||F_a||_{H^p(\mathbb{T})}^p = 1 + |pa/2|^2(1+o(1))$ as $a \longrightarrow 0 \ (\forall p < \infty)$, and hence
- $k_{\lambda}, \ 1/k_{\lambda} \in H^p(\mathbb{D}_2^{\infty})$ for every $\lambda, \lambda \in \mathbb{D}_2^{\infty}$ and $\forall p < \infty$.

COROLLARY 2: $F \in H^2(\mathbb{D}_2^{\infty}), ReF(\zeta) \ge 0 \ (\zeta \in \mathbb{D}_2^{\infty}) \Rightarrow F$ is cyclic. In particular, $F = 1 + f, ||f||_{\infty} \le 1$, is cyclic.

Rem: Corollaries are equivalent to Hedenmalm, Lindquist, and Seip's results (1997) (here with new and easier proofs).

8. Why it is important, tenthly?

- (10) Because it is equivalent to the dilation f(nx), n=1,2,... completeness problem(DCP)
- (11) Beacuse a partial case of the DCP is equivalent to the Riemann hypothesis

9. What is the DCP?

DILATION COMPLETENESS PROBLEM: To describe functions $f \in L^p(0, \infty)$ such that

$$span_{L^{p}(0,1)}(f(nx): n = 1, 2, 3, ...) = L^{p}(0, 1).$$

EXAMPLES:

(1) Functions with COMPLETE dilations: $f = Sin(\pi x)$; $f = e^{-x}$; $f = e^{-x^{\alpha}}$, $0 < \alpha \le 1$;

(2) Functions with INCOMPLETE dilations: $f = Sin(2\pi x)$; $f = e^{-x^{\alpha}}, \alpha > 1$;

(3) Riemann Hypothesis is equivalent to the DCP for $f(x) = \frac{1}{x} - [\frac{1}{x}], x > 0$ (B.Nyman 1950; L.Báez-Duarte 2003).

10. Periodic DCP

The FIRST STEP TO THE DCP - a PERIODIC DCP raised by Wintner (1944) and Beurling (1945), i.e. the question when f(nx), n = 1, 2, ... are complete in $L^2(0, 1)$ if

f is odd and 2-periodic.

 Aurel Wintner, 1944, in Amer. J. Math., motivated by analytical problems arising from the Eratosthenes sieve method.

 Arne Beurling, 1945, in a seminar talk at Uppsala University, whithout a declared motivation.

• The DILATIONS on $L^2_{odd}(\mathbb{R}/2\mathbb{Z})$ FORM an OPERATOR SEMIGROUP:

$$f \in L^2_{odd}(-1,1) \Rightarrow f = \sum_{k \ge 1} b_k Sin(\pi kx), \sum_{k \ge 1} |b_k|^2 < \infty.$$

HENCE $f(nx) = (T_n f)(x)$, where (T_n) acts on an ONB $e_k = Sin(\pi kx)$ as $T_n e_k = e_{nk}$.

• CHANGING the BASIS: $(e^{ikx})_{k\geq 1}$ in the Hardy space $H_0^2(\mathbf{D})$,

$$H_0^2(\mathbf{D}) = \{ f = \sum_{k \ge 1} a_k z^k : \|f\|_2^2 = \sum_{k \ge 1} |a_k|^2 < \infty \},$$

we get a semigroup of isometries

$$T_n f(z) = f(z^n), f \in H^2_0(\mathbf{D}).$$

• Now, the Periodic DCP is TO FIND CYCLIC VECTORS f of (T_n) :

$$span_{H^2}(T_nf: n \ge 1) = H^2_0(\mathbf{D}).$$

A unitary equivalence between $H_0^2(\mathbf{D})$ and $H^2(\mathbf{D}_2^{\infty})$:

$$U: f = \sum_{n \ge 1} \hat{f}(n) z^n \longmapsto Uf(\zeta) = \sum_{n \ge 1} \hat{f}(n) \zeta^{\alpha(n)}, \zeta \in \mathbb{D}_2^{\infty},$$

$$\alpha(n) = (\alpha_1, ..., \alpha_s, 0, ...) \text{ is defined by the prime decomposition}$$

$$n = p_1^{\alpha_1} \dots p_s^{\alpha_s}, \alpha_j \in \mathbb{Z}_+.$$

LEMMA. (1) U is unitary $H_0^2(\mathbf{D}) \longrightarrow H^2(\mathbf{D}_2^\infty)$ and transforms (T_n) into a multiplication semigroup $M_{\zeta} = (M_{\zeta^{\alpha}})_{\alpha \in \mathbf{z}_+(\infty)}$:

$$(UT_nU^{-1})f(\zeta) = \zeta^{\alpha(n)}f(\zeta) \ (\zeta \in \mathbb{D}_2^{\infty}, f \in H^2(\mathbb{D}_2^{\infty})).$$

(2) $E \in Lat(T_n) \Leftrightarrow UE \in Lat(M_{\zeta})$; a function $f \in H_0^2$ is (T_n) -cyclic iff Uf is M_{ζ} -cyclic.

• Conclusion: the following three problems are now equivalent:

 (1) Mζ cyclicity on the Hilbert multidisc
(2) Completeness of f(zⁿ), n=1,2,... in H²(D)
(3) Completeness of g(nx), n=1,2,... In L² (0,1), with 2-periodic odd extention of g

An Abridged History of the Periodic DCP

- A.Wintner, 1944: $f = \sum_{n>1} n^{-s} z^n$, Re(s) > 1/2 is (T_n) -cyclic.
- A.Beurling, 1945: f is (T_n) -cyclic $\Rightarrow Uf(\zeta) \neq 0$ for $\zeta \in \mathbb{D}_2^{\infty}$.
- R.Gosselin and J.Neuwirth, 1968,
- J.Ginsberg, J.Neuwirth, and D.Newman, 1970: f a polynomial, then f cyclic $\Leftrightarrow Uf(\zeta) \neq 0$ for $\zeta \in \mathfrak{n}_2^{\infty}$.
- H.Hedenmalm, P.Lindquist, and K.Seip, 1997-1998: $f = z + \sum_{n\geq 2} a_n z^n$, $\sum_{n\geq 2} |a_n| \leq 1 \Rightarrow f$ is cyclic; $f = \sum_{n\geq 1} \chi(n) z^n$ is cyclic, where χ stands for a bounded character of N.

Remark: As it is shown all these results follow from Theorem 1 above.

11. Two Open Questions

(1) Is Theorem 1 sharp?

Whether there exists a NON-CYCLIC $F \in H^2(\mathbb{n}_2^{\infty})$ such that $1/F \in H^2(\mathbb{n}_2^{\infty})$?

COMMENTS:

- $F \in H^2(\mathbf{D}), 1/F \in H^2(\mathbf{D})$ (obviously) implies that F is CYCLIC.
- It is plausible that for $H^2(\mathbb{D}^2)$ there is a counterexample:

HINT: if f(0) = 0 and $\varphi =: f' \in L^2_a(\mathbf{D})$ (the Bergman space on **D**) then

a) $\varphi \mapsto \frac{f(w) - f(z)}{w - z} =: F \in H^2(\mathbb{D}^2)$ (isometric embedding $L^2_a(\mathbb{D}) \longrightarrow H^2(\mathbb{D}^2)$),

b) if F is cyclic in $H^2(\mathbb{D}^2)$, then φ is cyclic in $L^2_a(\mathbb{D})$,

c) there exists $\varphi \in L^2_a(\mathbb{D})$, $1/\varphi \in L^2_a(\mathbb{D})$ which is NOT CYCLIC (A.Borichev and H.Hedenmalm)

11. Two Open Questions (cnd)

(2) V.Ya. Kozlov's problem (1950):

Let $0 < \beta < 1$ and $f_{\beta} \in L^2_{odd}(-1,1)$, $f_{\beta}|(0,1) = \chi_{(0,\beta)}$, 2-periodically extended on \mathbb{R} . For which values of β

 $f_{\beta}(nx), n = 1, 2, \dots$

are complete in $L^2_{odd}(-1,1)$?

Known cases (claimed V.Ya.Kozlov, Dokl. URSS, 73(1950), 441-444, no proofs):

CYCLIC:

 β = 1 (equivalent to reproducing kernel k_λ, λ = (0, 1/p₂, 1/p₃, ...))
β = 1/2, 2/3; NON-CYCLIC:
β = 1/3 (and a neighborhood);

4) $\beta = q/p$, p prime $p \neq 2$, q odd, and $tan^2(2\pi\beta) < 1/p$.

THE END

THANK YOU!