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Krein's systems

Symplectic structure on R?: Q = (_01 é) Xy = (Qxy).

Consider a 2 x 2 differential system with a spectral parameter z:

QX = zH(H)X — Q(t)X, t_<t<ty

v(t)

H, Qe Ll ((t_,ty) — R*>*?),

loc

where X(t) = (u(t)) We assume the (real-valued) coefficients to satisfy

By definition, a solution X = X(t) is a C?((t_, t,))-function satisfying
the equation.
Theorem

Every IVP has a unique solution on (t_, t;.). For each fixed t, this solution
presents an entire function u,(t) + iv,(t) of z of exponential type.
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Self-adjoint systems

(¥) QX =zH(t)X — Q(t)X, t_ <t < t,.

We may further assume that H(t), Q(t) are real symmetric locally
summable matrix-valued functions and that H(t) > 0. The Hilbert space
L2(H) consists of (equivalence classes) of vector-functions with

ty
= / {Hf, f}dt < .
t_

The system (%) is an eigenvalue equation DX = zX for the (formal)
differential operator

_py1lpd
D=H l:th+Q:|.
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Schrodinger equations:
—U=zu— qu.

Put v=—iand X = (u,v)" to obtain
. _(1 0 g O
oi=2(} )x- (3 O)x
H = I. The general form is
; 10 qi1 Q12)
QX = X — X, = qo1-
z (0 0) (q21 oo di2 = q21

The "standard form”: Q = (_32 _qq1> . In this case f = g1 + iqgy is the
-1 Q@

Dirac systems:

potential function.

v
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Krein's Canonical Systems

Canonical Systems are self-adjoint systems with @ = 0:

QX = zH(t)X.

A general self-adjoint system can be reduced to canonical form:
To reduce

QX = zH(t)X — Q()X, (x)
solve QV = —QV and make a substitution X = VY. Then (%) becomes

QY = z[V*HV] Y.

Example

. . . . csS 6_2 fot g 0
Dirac system with real potential f: H*> = P
0 e72 fO f

v
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de Branges' spaces of entire functions
Hardy space in C:

H2 = {f € Hol(C.)| |IF% —sup/ [F(x+ iy) Pl < o0).

Notation: if E(z) is entire we denote E#(z) = E(Z).

Hermite-Biehler entire functions
An entire E(z) is a Hermit-Biehler function (E € HB) if

|E*(2)| <|E(2)], z € C4.

de Branges' space B(E)

If E € HB then B(E) is defined as the space of entire functions F such
that F/E, F#/E € H?. Hilbert structure: if F, G € B(E) then

dx
|E?

<F,G>pE)=<F/E,G/E >H2:/ F(x)G(xX)—>
R

v
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de Branges' spaces of entire functions: axiomatic definition

Theorem (de Branges)

Suppose that H is a Hilbert space of entire functions that satisfies

(A1) FE H,F(\) =0 = F(z)(z—\)/(z— \) € H with the same norm
(A2) Y\ ¢ R, the point evaluation is bounded

(A3) F — F7 is an isometry

Then H = B(E) for some E € HB.
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Examples of dB spaces

Example

E is a polynomial. E € HB < all zeros are in C_. B(E) consists of all
poynomials of lesser degree.

Example
E = e~ B(E) = PW, (Payley-Wiener space).

Example

Let 1 > 0 be a finite measure on R such that polynomials are incomplete
in L2(u). Then the closure of polynomials is a de Branges space.

Example

The same example with £, = {e/!, 0 < ¢ < a} in place of polynomials.

(What is E in the last two examples ?77!!1)
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Krein Systems meet de Branges' spaces
Let E be an Hermite-Biehler function. Put
A= (E+E")/2, B=(E—E")/2i.

Reproducing kernels for B(E): for any A € C, F € B(E),
F()\) =< F, K\ > where

K)\(Z) =

B(2)A(N) — A(z)B(N)

|

>~

We will consider canonical systems
QX(t) = zH(t)X(t)

without " jump intervals”, i.e. intervals where H is a constant matrix of
rank 1.
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Krein Systems meet de Branges' spaces
Solve a canonical system with any real initial condition at t_. Denote the
solution by X;(t) = (A:(z), Bt(2)).

Theorem

For any fixed t, E;(z) = A¢(z) — iB:(z) is a Hermit-Biehler entire function.
The map W defined as WX, = K& extends unitarily to

W : L?(H,(t_,t)) — B(E:)
(Weyl transform).
The formula for W':

t
Wf(Z) =< Hf , Xz ZL2(H (t_,t)= / < H(t)f(t),Xg(t) > dt.
t

Alexei Poltoratski (Texas A&M) Krein - de Branges theory in spectral analysis

May 23,2013 10 /24



Examples of Weyl transforms
Krein- de Branges’ theory:

Canonical System on (t_, t}) LN B(E:), te[t_,ty)

Example

Orthogonal polynomials satisfy difference equations corresponding to Krein
systems with jump intervals. B(E;) = B, is the same on each jump
interval, B, = P,.

Example
Free Dirac (Q = 0): E; = e 2™t B(E;) = PW, as sets.

Theorem

Let B(E;) be the chain of de Branges’ spaces corresponding to a Dirac
system with an L} -potential. Then B(E;) = PW; as sets.

loc

Gelfand-Levitan theory: a study of systems with B(E;).= PW; as sets.
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Let B(E;) be a chain of de Branges' spaces, t € [t_, t;) (the final space
B(E:,) may or may not exist). There exists a locally finite positive
measure x4 on R such that

HfHB(Er) = HfHLZ(u) for all f € B(E;) and all t.

1 is the spectral measure for the corresponding Krein's system. Relation
with de Branges' functions:

1
’ETP—)MaSt—)t+.

(In the limit circle case the limit will produce one of spectral measures.)
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Consider the Dirac system

QX:z(l O>X—<_q2 ql)x
00 —-q1 q2

with potential g = g1 + iqz. Let B(E;) = PW; (as sets) be the
corresponding chain of de Branges’ spaces. If Kj is the reproducing kernel
for By = B(E;) then via the formula for the Weyl transform we get

d d

S KE(0) = 1IR3, = E2(0).
Recalling that E; = A; — iB;, where X;(t) = (A:(2), B:(2))T is a solution
to the initial system, we obtain

d
2 E,(0) = —qE
p t(O) q t(O)
o 1d 1d d
_ _ - 2:_77 o 112
97 o4 log £¢(0) 2 dt log dtHKOH

(Gelfand-Levitan formula).
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We denote by [i the Fourier transform of u:
() = [ e du(e)

Theorem (Krein)

Let g and . be the potential and spectral measure of a Dirac system on
R4. Then g € C(Ry) iff i = 0o + ¢, where ¢ € C(R).

Proof of the 'if" part:
For any f € Bi(e PW;)

t
/ f=£(0)=<f, K¢ >Bt:/ff<5du

—t
if we put K& = 1t then the last equation implies
l=yY'xa=y"+tx¢p on [t t]
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We obtained that the Fourier transform ¢ = ¢ of K¢ satisfies the
Volterra equation

(I + ’Ct)¢ = 17

Where K; is an operator on L?[—t, t], K;f = f * ¢. The operator K; is an
integral operator with a continuous kernel. Hence K; is compact
(approximate the kernel with polynomials). Hence | + K; is Fredholm.
Since

< (I +Ke)f, g >2(—t,g=< .8 >12()=<f, & >B,>
| + K+ has a trivial kernel. Therefore, | + KC; is invertible and
Pt =(1+ 1K) '

By the Fredholm-Hilbert Lemma on solutions of integral equations, 1!(x)
is differentiable with respect to t for each fixed x € [—t, t] and the
derivative %W“(x) is a continuous function of x.
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Return to the de Branges' chain B; = B(E;), E; = A; — iB;. Denote
5t = Et,O[t = At,ﬁt = Bt-
WLOG we can assume that E;(0) > O for all t. Then

iz

E(0)

Bi(z) = Ks(2).
It follows that 3f(x) is the x-derivative, in the sense of distributions, of a
function h¢(x) € C[—t, t] that is continuous in x and continuously

differentiable in t. Similar statements can be proved for af, &t.
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We obtain that

t

E:(0) = A:(0) = [ ax = (6) ~ -1

—t

where f;(x) is a continuous function of x, continuously differentiable with
respect to s. Notice, that since A is real, a;(x) = a¢(—x) and

fi(x) = f(—x). Hence f/(x) + f/(—t), understood in the sense of
distributions, is purely imaginary. Therefore

—aln = %'Og E(0) = w et = ft(—t))EIO()ﬂ’(t) +f{(—t))

(f:(t) — f(—1))
R0

Since f; is continuously differentiable in t, g is continuous. [J
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Riemann zeta function

The Riemann (-function

£ is entire satisfying
&(z) = €01 - 2).

The zeros of the ¢-function are the non-trivial zeros of the (-function.
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Put A=¢(3—iz), B=i¢ (53— iz).

Theorem (J. Lagarias, 2006)

The Riemann Hypothesis holds iff E = A — iB is an Hermite-Biehler
function.

Recall: E € HB < there exists a Krein Canonical System
QX = zH(t)X

generating E. Then the zeros of A, that are the zeros of the { function
after z — % — iz, are the spectrum of the Krein Canonical System.
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Two approaches to RH

Approach |

Construct a Hilbert space of entire functions, verify the axioms to prove
that it is a de Branges' space, prove that the generating function is the
desired E(z).

Approach I

Construct a Hamiltonian H(t) such that the corresponding Krein
Canonical System generates E(z) (Hilbert-Pélya operator).
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Approach I: Mellin Transform, Sonine spaces

L. de Branges, J.-F. Burnol.

Consider two integral transforms on L?(R):

The cosine (Fourier) transform

rer =2 [ siton

The completed (right) Mellin transform

Mg(z) = 72T (g) /0 ~ g(t)t—2dx.

Consider a chain of subspaces S, C L2(R.), a > 0 consisting of
f € L2(Ry) such that f = Ff = 0 on (0, a) (Sonine Spaces).
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Approach I: Mellin Transform, Sonine spaces

Define the spaces

B, = M(S,).

Then B, form a de Branges chain of Hilbert spaces of entire functions [de
Branges]. These spaces display " Riemann-type” behavior (order of growth,
distribution of zeros [de Branges, Burnol]). For instance, reproducing
kernels of B, corresponding to the Riemann zeros form a complete system
for all a > 1 and minimal system for all a < 1 [Burnol, 2004].
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Approach |I: Morse Potentials
J. Lagarias.

Consider the Schrodinger operator with the Morse potential:
d?

dr?

with a fixed boundary condition at t_. Morse potentials arise in quantum

physics (potentials for di-atomic molecules, magnetic fields on hyperbolic
plane, Selberg trace formula) but are usually studied on the left half-axis

or on the whole line.

1
+ Vi(t) on [t_,00), Vi(t) = Zezt + ket.

On the right half-line, the spectrum is discrete, simple and bounded from
below. The eigenvector corresponding to the spectral parameter X is the
Whittaker function Wi x(t).

The Weyl asymptotics of the spectrum [Lagarias]:

#{ < T}=aVTlogT +aVT+0(1) as T — .
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Approach |I: Morse Potentials

The entire function

displays Riemann-£ behavior:

Theorem (Lagarias, 2009)

1) F(z) is an entire function of order one and maximal type, real on R and
on Rz = %

2)F(z)=F(1-2)

3) (# of zeros in [-T,T]) = 2T log T + 2(2log2 — 1 —log t_) T + O(1)
4) All but finitely many zeros of F are on Rz = % All other zeros are on

the real line. All zeros are simple, except possibly at z = %
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