Krein - de Branges theory in spectral analysis

Alexei Poltoratski

Texas A&M

May 23, 2013

Alexei Poltoratski (Texas A&M) Krein - de Branges theory in spectral analysis

Krein's systems

Symplectic structure on \mathbb{R}^2 : $\Omega = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $\{x, y\} = (\Omega x, y)$.

Consider a 2×2 differential system with a spectral parameter *z*:

$$\Omega \dot{X} = zH(t)X - Q(t)X, \quad t_- < t < t_+$$

where $X(t) = \begin{pmatrix} u(t) \\ v(t) \end{pmatrix}$. We assume the (real-valued) coefficients to satisfy

$$H, \ Q \in L^1_{loc}((t_-,t_+) \to \mathbb{R}^{2 \times 2}).$$

By definition, a solution $X = X_z(t)$ is a $C^2((t_-, t_+))$ -function satisfying the equation.

Theorem

Every IVP has a unique solution on (t_-, t_+) . For each fixed t, this solution presents an entire function $u_z(t) + iv_z(t)$ of z of exponential type.

イロト 不得下 イヨト イヨト 二日

Self-adjoint systems

(*)
$$\Omega \dot{X} = zH(t)X - Q(t)X, t_{-} < t < t_{+}$$

We may further assume that H(t), Q(t) are real symmetric locally summable matrix-valued functions and that $H(t) \ge 0$. The Hilbert space $L^2(H)$ consists of (equivalence classes) of vector-functions with

$$||f||_{H}^{2} = \int_{t_{-}}^{t_{+}} \{Hf, f\} dt < \infty.$$

The system (*) is an eigenvalue equation DX = zX for the (formal) differential operator

$$D=H^{-1}\left[\Omega\frac{d}{dt}+Q\right].$$

Schrödinger equations:

$$-\ddot{u}=zu-qu.$$

Put $v = -\dot{u}$ and $X = (u, v)^T$ to obtain

$$\Omega \dot{X} = z \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} X - \begin{pmatrix} q & 0 \\ 0 & -1 \end{pmatrix} X.$$

Dirac systems:

 $H \equiv I$. The general form is

$$\Omega \dot{X} = z \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} X - \begin{pmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{pmatrix} X, \ q_{12} = q_{21}.$$

The "standard form": $Q = \begin{pmatrix} -q_2 & -q_1 \\ -q_1 & q_2 \end{pmatrix}$. In this case $f = q_1 + iq_2$ is the potential function.

Krein's Canonical Systems

Canonical Systems are self-adjoint systems with $Q \equiv 0$:

$$\Omega \dot{X} = z H(t) X.$$

A general self-adjoint system can be reduced to canonical form: To reduce

$$\Omega \dot{X} = zH(t)X - Q(t)X, \quad (*)$$

solve $\Omega V = -QV$ and make a substitution X = VY. Then (*) becomes

$$\Omega \dot{Y} = z \left[V^* H V \right] Y.$$

Example

Dirac system with real potential f: $H^{CS} = \begin{pmatrix} e^{-2\int_0^t f} & 0\\ 0 & e^{-2\int_0^t f} \end{pmatrix}$.

Alexei Poltoratski (Texas A&M) Krein - de Branges theory in spectral analysis

de Branges' spaces of entire functions Hardy space in \mathbb{C}_+ :

$$H^{2} = \{ f \in Hol(\mathbb{C}_{+}) | ||f||_{H^{2}}^{2} = \sup_{y > 0} \int_{\mathbb{R}} |f(x + iy)|^{2} dx < \infty \}.$$

Notation: if E(z) is entire we denote $E^{\#}(z) = \overline{E}(\overline{z})$.

Hermite-Biehler entire functions An entire E(z) is a Hermit-Biehler function ($E \in HB$) if

$$|E^{\#}(z)| < |E(z)|, \ z \in \mathbb{C}_+.$$

de Branges' space B(E)

If $E \in HB$ then B(E) is defined as the space of entire functions F such that F/E, $F^{\#}/E \in H^2$. Hilbert structure: if $F, G \in B(E)$ then

$$< F, G >_{B(E)} = < F/E, G/E >_{H^2} = \int_{\mathbb{R}} F(x) \overline{G}(x) \frac{dx}{|E|^2}.$$

de Branges' spaces of entire functions: axiomatic definition

Theorem (de Branges)

Suppose that H is a Hilbert space of entire functions that satisfies

(A1) $F \in H, F(\lambda) = 0 \implies F(z)(z - \overline{\lambda})/(z - \lambda) \in H$ with the same norm

(A2) $\forall \lambda \notin \mathbb{R}$, the point evaluation is bounded

(A3) $F \rightarrow F^{\#}$ is an isometry

Then H = B(E) for some $E \in HB$.

Examples of dB spaces

Example

E is a polynomial. $E \in HB \Leftrightarrow$ all zeros are in $\overline{\mathbb{C}}_{-}$. B(E) consists of all poynomials of lesser degree.

Example

$$E = e^{-iaz}$$
, $B(E) = PW_a$ (Payley-Wiener space).

Example

Let $\mu > 0$ be a finite measure on \mathbb{R} such that polynomials are incomplete in $L^2(\mu)$. Then the closure of polynomials is a de Branges space.

Example

The same example with $\mathcal{E}_a = \{e^{ict}, \ 0 \le c \le a\}$ in place of polynomials.

(What is *E* in the last two examples ???!!!)

・ロン ・四 ・ ・ ヨン ・ ヨン

Krein Systems meet de Branges' spaces

Let E be an Hermite-Biehler function. Put

$$A = (E + E^{\#})/2, \ B = (E - E^{\#})/2i.$$

Reproducing kernels for B(E): for any $\lambda \in \mathbb{C}$, $F \in B(E)$, $F(\lambda) = \langle F, K_{\lambda} \rangle$ where

$$\mathcal{K}_\lambda(z) = rac{1}{\pi} rac{B(z)ar{A}(\lambda) - A(z)ar{B}(\lambda)}{z - ar{\lambda}}.$$

We will consider canonical systems

$$\Omega \dot{X}(t) = z H(t) X(t)$$

without "jump intervals", i.e. intervals where H is a constant matrix of rank 1.

Krein Systems meet de Branges' spaces

Solve a canonical system with any real initial condition at t_- . Denote the solution by $X_z(t) = (A_t(z), B_t(z))$.

Theorem

For any fixed t, $E_t(z) = A_t(z) - iB_t(z)$ is a Hermit-Biehler entire function. The map W defined as $WX_z = K_{\overline{z}}^t$ extends unitarily to

$$W: L^2(H, (t_-, t)) \rightarrow B(E_t)$$

(Weyl transform).

The formula for W:

$$Wf(z) = \langle Hf, X_{\bar{z}} \rangle_{L^2(H,(t_-,t))} = \int_{t_-}^t \langle H(t)f(t), X_{\bar{z}}(t) \rangle dt.$$

Examples of Weyl transforms

Krein- de Branges' theory:

$$\text{Canonical System on } (t_-,t_+) \stackrel{W}{\longleftrightarrow} B(E_t), \ t \in [t_-,t_+)$$

Example

Orthogonal polynomials satisfy difference equations corresponding to Krein systems with jump intervals. $B(E_t) = B_n$ is the same on each jump interval, $B_n = P_n$.

Example

Free Dirac
$$(Q = 0)$$
: $E_t = e^{-2\pi i z t}$, $B(E_t) = PW_t$ as sets.

Theorem

Let $B(E_t)$ be the chain of de Branges' spaces corresponding to a Dirac system with an L^1_{loc} -potential. Then $B(E_t) = PW_t$ as sets.

Gelfand-Levitan theory: a study of systems with $B(E_t) = PW_t$ as sets.

Alexei Poltoratski (Texas A&M) Krein - de Branges theory in spectral analysis

Let $B(E_t)$ be a chain of de Branges' spaces, $t \in [t_-, t_+)$ (the final space $B(E_{t_+})$ may or may not exist). There exists a locally finite positive measure μ on \mathbb{R} such that

$$||f||_{B(E_t)} = ||f||_{L^2(\mu)}$$
 for all $f \in B(E_t)$ and all t .

 μ is the spectral measure for the corresponding Krein's system. Relation with de Branges' functions:

$$\frac{1}{|E_t|^2} \to \mu \text{ as } t \to t_+.$$

(In the limit circle case the limit will produce one of spectral measures.)

Consider the Dirac system

$$\Omega \dot{X} = z \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} X - \begin{pmatrix} -q_2 & q_1 \\ -q_1 & q_2 \end{pmatrix} X$$

with potential $q = q_1 + iq_2$. Let $B(E_t) = PW_t$ (as sets) be the corresponding chain of de Branges' spaces. If K_0^t is the reproducing kernel for $B_t = B(E_t)$ then via the formula for the Weyl transform we get

$$\frac{d}{dt}K_0^t(0) = \frac{d}{dt}||K_0^t||_{B_t}^2 = E_t^2(0).$$

Recalling that $E_t = A_t - iB_t$, where $X_z(t) = (A_t(z), B_t(z))^T$ is a solution to the initial system, we obtain

$$\frac{d}{dt}E_t(0) = -qE_t(0)$$

\sim	r
U	L
_	-

$$q = -rac{1}{2}rac{d}{dt}\log E_t(0)^2 = -rac{1}{2}rac{d}{dt}\log rac{d}{dt}||K_0^t||^2$$

(Gelfand-Levitan formula).

Alexei Poltoratski (Texas A&M) Krein - de Branges theory in spectral analysis

We denote by $\hat{\mu}$ the Fourier transform of μ :

$$\hat{\mu}(z) = \int e^{-2\pi i z t} d\mu(t).$$

Theorem (Krein)

Let q and μ be the potential and spectral measure of a Dirac system on \mathbb{R}_+ . Then $q \in C(\mathbb{R}_+)$ iff $\hat{\mu} = \delta_0 + \phi$, where $\phi \in C(\mathbb{R})$.

Proof of the 'if' part:

For any $f \in B_t (\in PW_t)$

$$\int_{-t}^{t} \hat{f} = f(0) = < f, K_{0}^{t} >_{B_{t}} = \int f \bar{K}_{0}^{t} d\mu$$

if we put $\hat{K}_0^t = \psi^t$ then the last equation implies

$$1 = \psi^t * \hat{\mu} = \psi^t + \psi^t * \phi \quad \text{on} \quad [-t, t]$$

We obtained that the Fourier transform $\psi^t=\psi$ of K_0^t satisfies the Volterra equation

$$(I+\mathcal{K}_t)\psi=1,$$

Where \mathcal{K}_t is an operator on $L^2[-t, t]$, $\mathcal{K}_t f = f * \phi$. The operator \mathcal{K}_t is an integral operator with a continuous kernel. Hence \mathcal{K}_t is compact (approximate the kernel with polynomials). Hence $I + \mathcal{K}_t$ is Fredholm. Since

$$< (I + \mathcal{K}_t)f, g >_{L^2[-t,t]} = < f, g >_{L^2(\mu)} = < f, g >_{B_t},$$

 $I + \mathcal{K}_t$ has a trivial kernel. Therefore, $I + \mathcal{K}_t$ is invertible and

$$\psi^t = (I + \mathcal{K}_t)^{-1} \mathbf{1}.$$

By the Fredholm-Hilbert Lemma on solutions of integral equations, $\psi^t(x)$ is differentiable with respect to t for each fixed $x \in [-t, t]$ and the derivative $\frac{d}{dt}\psi^t(x)$ is a continuous function of x.

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ●

Return to the de Branges' chain $B_t = B(E_t)$, $E_t = A_t - iB_t$. Denote

$$\varepsilon^t = \hat{E}_t, \alpha^t = \hat{A}_t, \beta^t = \hat{B}_t$$

WLOG we can assume that $E_t(0) > 0$ for all t. Then

$$B_t(z) = \frac{iz}{E_t(0)} K_0^t(z).$$

It follows that $\beta^t(x)$ is the x-derivative, in the sense of distributions, of a function $h_t(x) \in C[-t, t]$ that is continuous in x and continuously differentiable in t. Similar statements can be proved for α^t , ε^t .

We obtain that

$$E_t(0) = A_t(0) = \int_{-t}^t \alpha_t = f_t(t) - f_t(-t)$$

where $f_s(x)$ is a continuous function of x, continuously differentiable with respect to s. Notice, that since A is real, $\alpha_t(x) = \bar{\alpha}_t(-x)$ and $f_t(x) = \bar{f}_t(-x)$. Hence $f'_t(x) + \bar{f}'_t(-t)$, understood in the sense of distributions, is purely imaginary. Therefore

$$-q(t) = \frac{d}{dt} \log E_t(0) = \Re \frac{(\dot{f}_t(t) - \dot{f}_t(-t)) + (f'_t(t) + f'_t(-t))}{E_t(0)} =$$

$$\Re \frac{(f_t(t)-f_t(-t))}{E_t(0)}.$$

Since f_t is continuously differentiable in t, q is continuous.

Riemann zeta function

The Riemann ζ -function

$$\zeta(z) = \sum_{n=0}^{\infty} \frac{1}{n^z}$$

The Riemann ξ -function

$$\xi(z) = \frac{1}{2}\pi^{-z/2}z(z-1)\Gamma\left(\frac{z}{2}\right)\zeta(z).$$

 ξ is entire satisfying

$$\xi(z) = \xi(1-z).$$

The zeros of the ξ -function are the non-trivial zeros of the ζ -function.

Put
$$A = \xi \left(\frac{1}{2} - iz\right), \ B = i\xi' \left(\frac{1}{2} - iz\right).$$

Theorem (J. Lagarias, 2006)

The Riemann Hypothesis holds iff E = A - iB is an Hermite-Biehler function.

Recall: $E \in HB \Leftrightarrow$ there exists a Krein Canonical System

$$\Omega \dot{X} = z H(t) X$$

generating *E*. Then the zeros of *A*, that are the zeros of the ζ function after $z \mapsto \frac{1}{2} - iz$, are the spectrum of the Krein Canonical System.

Two approaches to RH

Approach I

Construct a Hilbert space of entire functions, verify the axioms to prove that it is a de Branges' space, prove that the generating function is the desired E(z).

Approach II

Construct a Hamiltonian H(t) such that the corresponding Krein Canonical System generates E(z) (Hilbert-Pólya operator).

Approach I: Mellin Transform, Sonine spaces

L. de Branges, J.-F. Burnol.

Consider two integral transforms on $L^2(\mathbb{R}_+)$:

The cosine (Fourier) transform

$$\mathcal{F}g(z) = 2\int_0^\infty \cos(2\pi tz)g(t)dt$$

The completed (right) Mellin transform

$$\mathcal{M}g(z) = \pi^{z/2} \Gamma\left(\frac{z}{2}\right) \int_0^\infty g(t) t^{-z} dx.$$

Consider a chain of subspaces $S_a \subset L^2(\mathbb{R}_+)$, a > 0 consisting of $f \in L^2(\mathbb{R}_+)$ such that $f = \mathcal{F}f = 0$ on (0, a) (Sonine Spaces).

Approach I: Mellin Transform, Sonine spaces

Define the spaces

$$B_a = \mathcal{M}(S_a).$$

Then B_a form a de Branges chain of Hilbert spaces of entire functions [de Branges]. These spaces display "Riemann-type" behavior (order of growth, distribution of zeros [de Branges, Burnol]). For instance, reproducing kernels of B_a corresponding to the Riemann zeros form a complete system for all a > 1 and minimal system for all a < 1 [Burnol, 2004].

Approach II: Morse Potentials J. Lagarias.

Consider the Schrödinger operator with the Morse potential:

$$-rac{d^2}{dt^2} + V_k(t) ext{ on } [t_-,\infty), \ \ V_k(t) = rac{1}{4}e^{2t} + ke^t.$$

with a fixed boundary condition at t_{-} . Morse potentials arise in quantum physics (potentials for di-atomic molecules, magnetic fields on hyperbolic plane, Selberg trace formula) but are usually studied on the left half-axis or on the whole line.

On the right half-line, the spectrum is discrete, simple and bounded from below. The eigenvector corresponding to the spectral parameter λ is the Whittaker function $W_{k,\lambda}(t)$.

The Weyl asymptotics of the spectrum [Lagarias]:

$$\#\{\lambda_n < T\} = c_1\sqrt{T}\log T + c_2\sqrt{T} + O(1) \quad \text{as } T \to \infty.$$

Approach II: Morse Potentials

The entire function

$$F(z) = W_{k,z-\frac{1}{2}}(t)$$

displays Riemann- ξ behavior:

Theorem (Lagarias, 2009)

1) F(z) is an entire function of order one and maximal type, real on \mathbb{R} and on $\Re z = \frac{1}{2}$ 2) F(z) = F(1-z)3) (# of zeros in [-T, T]) $= \frac{2}{\pi}T\log T + \frac{2}{\pi}(2\log 2 - 1 - \log t_{-})T + O(1)$ 4) All but finitely many zeros of F are on $\Re z = \frac{1}{2}$. All other zeros are on the real line. All zeros are simple, except possibly at $z = \frac{1}{2}$.