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Krein’s systems

Symplectic structure on R2: Ω =

(
0 1
−1 0

)
, {x , y} = (Ωx , y).

Consider a 2× 2 differential system with a spectral parameter z :

ΩẊ = zH(t)X − Q(t)X , t− < t < t+

where X (t) =

(
u(t)
v(t)

)
. We assume the (real-valued) coefficients to satisfy

H, Q ∈ L1
loc((t−, t+)→ R2×2).

By definition, a solution X = Xz(t) is a C 2((t−, t+))-function satisfying
the equation.

Theorem

Every IVP has a unique solution on (t−, t+). For each fixed t, this solution
presents an entire function uz(t) + ivz(t) of z of exponential type.
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Self-adjoint systems

(∗) ΩẊ = zH(t)X − Q(t)X , t− < t < t+.

We may further assume that H(t),Q(t) are real symmetric locally
summable matrix-valued functions and that H(t) ≥ 0. The Hilbert space
L2(H) consists of (equivalence classes) of vector-functions with

||f ||2H =

∫ t+

t−

{Hf , f }dt <∞.

The system (∗) is an eigenvalue equation DX = zX for the (formal)
differential operator

D = H−1

[
Ω

d

dt
+ Q

]
.
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Schrödinger equations:

−ü = zu − qu.

Put v = −u̇ and X = (u, v)T to obtain

ΩẊ = z

(
1 0
0 0

)
X −

(
q 0
0 −1

)
X .

Dirac systems:

H ≡ I . The general form is

ΩẊ = z

(
1 0
0 0

)
X −

(
q11 q12

q21 q22

)
X , q12 = q21.

The ”standard form”: Q =

(
−q2 −q1

−q1 q2

)
. In this case f = q1 + iq2 is the

potential function.
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Krein’s Canonical Systems
Canonical Systems are self-adjoint systems with Q ≡ 0:

ΩẊ = zH(t)X .

A general self-adjoint system can be reduced to canonical form:

To reduce
ΩẊ = zH(t)X − Q(t)X , (∗)

solve ΩV̇ = −QV and make a substitution X = VY . Then (∗) becomes

ΩẎ = z [V ∗HV ] Y .

Example

Dirac system with real potential f : HCS =

(
e−2

∫ t
0 f 0

0 e−2
∫ t

0 f

)
.
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de Branges’ spaces of entire functions
Hardy space in C+:

H2 = {f ∈ Hol(C+)| ||f ||2H2 = sup
y>0

∫
R
|f (x + iy)|2dx <∞}.

Notation: if E (z) is entire we denote E #(z) = Ē (z̄).

Hermite-Biehler entire functions

An entire E (z) is a Hermit-Biehler function (E ∈ HB) if

|E #(z)| < |E (z)|, z ∈ C+.

de Branges’ space B(E )

If E ∈ HB then B(E ) is defined as the space of entire functions F such
that F/E , F #/E ∈ H2. Hilbert structure: if F ,G ∈ B(E ) then

< F ,G >B(E)=< F/E ,G/E >H2=

∫
R

F (x)Ḡ (x)
dx

|E |2
.
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de Branges’ spaces of entire functions: axiomatic definition

Theorem (de Branges)

Suppose that H is a Hilbert space of entire functions that satisfies

(A1) F ∈ H,F (λ) = 0 ⇒ F (z)(z − λ̄)/(z − λ) ∈ H with the same norm

(A2) ∀λ 6∈ R, the point evaluation is bounded

(A3) F → F # is an isometry

Then H = B(E ) for some E ∈ HB.
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Examples of dB spaces

Example

E is a polynomial. E ∈ HB ⇔ all zeros are in C̄−. B(E ) consists of all
poynomials of lesser degree.

Example

E = e−iaz , B(E ) = PWa (Payley-Wiener space).

Example

Let µ > 0 be a finite measure on R such that polynomials are incomplete
in L2(µ). Then the closure of polynomials is a de Branges space.

Example

The same example with Ea = {e ict , 0 ≤ c ≤ a} in place of polynomials.

(What is E in the last two examples ???!!!)
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Krein Systems meet de Branges’ spaces

Let E be an Hermite-Biehler function. Put

A = (E + E #)/2, B = (E − E #)/2i .

Reproducing kernels for B(E ): for any λ ∈ C, F ∈ B(E ),
F (λ) =< F ,Kλ > where

Kλ(z) =
1

π

B(z)Ā(λ)− A(z)B̄(λ)

z − λ̄
.

We will consider canonical systems

ΩẊ (t) = zH(t)X (t)

without ”jump intervals”, i.e. intervals where H is a constant matrix of
rank 1.
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Krein Systems meet de Branges’ spaces

Solve a canonical system with any real initial condition at t−. Denote the
solution by Xz(t) = (At(z),Bt(z)).

Theorem

For any fixed t, Et(z) = At(z)− iBt(z) is a Hermit-Biehler entire function.
The map W defined as WXz = K t

z̄ extends unitarily to

W : L2(H, (t−, t))→ B(Et)

(Weyl transform).

The formula for W :

Wf (z) =< Hf ,Xz̄ >L2(H,(t−,t))=

∫ t

t−

< H(t)f (t),Xz̄(t) > dt.
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Examples of Weyl transforms
Krein- de Branges’ theory:

Canonical System on (t−, t+)
W←→ B(Et), t ∈ [t−, t+)

Example

Orthogonal polynomials satisfy difference equations corresponding to Krein
systems with jump intervals. B(Et) = Bn is the same on each jump
interval, Bn = Pn.

Example

Free Dirac (Q = 0): Et = e−2πizt , B(Et) = PWt as sets.

Theorem

Let B(Et) be the chain of de Branges’ spaces corresponding to a Dirac
system with an L1

loc -potential. Then B(Et) = PWt as sets.

Gelfand-Levitan theory: a study of systems with B(Et) = PWt as sets.
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Let B(Et) be a chain of de Branges’ spaces, t ∈ [t−, t+) (the final space
B(Et+) may or may not exist). There exists a locally finite positive
measure µ on R such that

||f ||B(Et) = ||f ||L2(µ) for all f ∈ B(Et) and all t.

µ is the spectral measure for the corresponding Krein’s system. Relation
with de Branges’ functions:

1

|Et |2
→ µ as t → t+.

(In the limit circle case the limit will produce one of spectral measures.)
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Consider the Dirac system

ΩẊ = z

(
1 0
0 0

)
X −

(
−q2 q1

−q1 q2

)
X

with potential q = q1 + iq2. Let B(Et) = PWt (as sets) be the
corresponding chain of de Branges’ spaces. If K t

0 is the reproducing kernel
for Bt = B(Et) then via the formula for the Weyl transform we get

d

dt
K t

0 (0) =
d

dt
||K t

0 ||2Bt
= E 2

t (0).

Recalling that Et = At − iBt , where Xz(t) = (At(z),Bt(z))T is a solution
to the initial system, we obtain

d

dt
Et(0) = −qEt(0)

or

q = −1

2

d

dt
log Et(0)2 = −1

2

d

dt
log

d

dt
||K t

0 ||2

(Gelfand-Levitan formula).
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We denote by µ̂ the Fourier transform of µ:

µ̂(z) =

∫
e−2πiztdµ(t).

Theorem (Krein)

Let q and µ be the potential and spectral measure of a Dirac system on
R+. Then q ∈ C (R+) iff µ̂ = δ0 + φ, where φ ∈ C (R).

Proof of the ’if’ part:

For any f ∈ Bt(∈ PWt)∫ t

−t
f̂ = f (0) =< f ,K t

0 >Bt =

∫
f K̄ t

0 dµ

if we put K̂ t
0 = ψt then the last equation implies

1 = ψt ∗ µ̂ = ψt + ψt ∗ φ on [−t, t]
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We obtained that the Fourier transform ψt = ψ of K t
0 satisfies the

Volterra equation
(I +Kt)ψ = 1,

Where Kt is an operator on L2[−t, t], Kt f = f ∗ φ. The operator Kt is an
integral operator with a continuous kernel. Hence Kt is compact
(approximate the kernel with polynomials). Hence I +Kt is Fredholm.
Since

< (I +Kt)f , g >L2[−t,t]=< f , g >L2(µ)=< f , g >Bt ,

I +Kt has a trivial kernel. Therefore, I +Kt is invertible and

ψt = (I +Kt)
−11.

By the Fredholm-Hilbert Lemma on solutions of integral equations, ψt(x)
is differentiable with respect to t for each fixed x ∈ [−t, t] and the
derivative d

dtψ
t(x) is a continuous function of x .
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Return to the de Branges’ chain Bt = B(Et), Et = At − iBt . Denote

εt = Êt , α
t = Ât , β

t = B̂t .

WLOG we can assume that Et(0) > 0 for all t. Then

Bt(z) =
iz

Et(0)
K t

0 (z).

It follows that βt(x) is the x-derivative, in the sense of distributions, of a
function ht(x) ∈ C [−t, t] that is continuous in x and continuously
differentiable in t. Similar statements can be proved for αt , εt .
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We obtain that

Et(0) = At(0) =

∫ t

−t
αt = ft(t)− ft(−t)

where fs(x) is a continuous function of x , continuously differentiable with
respect to s. Notice, that since A is real, αt(x) = ᾱt(−x) and
ft(x) = f̄t(−x). Hence f ′t (x) + f̄ ′t (−t), understood in the sense of
distributions, is purely imaginary. Therefore

−q(t) =
d

dt
log Et(0) = <(ḟt(t)− ḟt(−t)) + (f ′t (t) + f ′t (−t))

Et(0)
=

<(ḟt(t)− ḟt(−t))

Et(0)
.

Since ft is continuously differentiable in t, q is continuous. �
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Riemann zeta function

The Riemann ζ-function

ζ(z) =
∞∑
n=0

1

nz

The Riemann ξ-function

ξ(z) =
1

2
π−z/2z(z − 1)Γ

(z

2

)
ζ(z).

ξ is entire satisfying
ξ(z) = ξ(1− z).

The zeros of the ξ-function are the non-trivial zeros of the ζ-function.
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Put A = ξ
(

1
2 − iz

)
, B = iξ′

(
1
2 − iz

)
.

Theorem (J. Lagarias, 2006)

The Riemann Hypothesis holds iff E = A− iB is an Hermite-Biehler
function.

Recall: E ∈ HB ⇔ there exists a Krein Canonical System

ΩẊ = zH(t)X

generating E . Then the zeros of A, that are the zeros of the ζ function
after z 7→ 1

2 − iz , are the spectrum of the Krein Canonical System.
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Two approaches to RH

Approach I

Construct a Hilbert space of entire functions, verify the axioms to prove
that it is a de Branges’ space, prove that the generating function is the
desired E (z).

Approach II

Construct a Hamiltonian H(t) such that the corresponding Krein
Canonical System generates E (z) (Hilbert-Pólya operator).
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Approach I: Mellin Transform, Sonine spaces

L. de Branges, J.-F. Burnol.

Consider two integral transforms on L2(R+):

The cosine (Fourier) transform

Fg(z) = 2

∫ ∞
0

cos(2πtz)g(t)dt

The completed (right) Mellin transform

Mg(z) = πz/2Γ
(z

2

)∫ ∞
0

g(t)t−zdx .

Consider a chain of subspaces Sa ⊂ L2(R+), a > 0 consisting of
f ∈ L2(R+) such that f = F f = 0 on (0, a) (Sonine Spaces).
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Approach I: Mellin Transform, Sonine spaces

Define the spaces
Ba =M(Sa).

Then Ba form a de Branges chain of Hilbert spaces of entire functions [de
Branges]. These spaces display ”Riemann-type” behavior (order of growth,
distribution of zeros [de Branges, Burnol]). For instance, reproducing
kernels of Ba corresponding to the Riemann zeros form a complete system
for all a > 1 and minimal system for all a < 1 [Burnol, 2004].
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Approach II: Morse Potentials
J. Lagarias.

Consider the Schrödinger operator with the Morse potential:

− d2

dt2
+ Vk(t) on [t−,∞), Vk(t) =

1

4
e2t + ket .

with a fixed boundary condition at t−. Morse potentials arise in quantum
physics (potentials for di-atomic molecules, magnetic fields on hyperbolic
plane, Selberg trace formula) but are usually studied on the left half-axis
or on the whole line.

On the right half-line, the spectrum is discrete, simple and bounded from
below. The eigenvector corresponding to the spectral parameter λ is the
Whittaker function Wk,λ(t).

The Weyl asymptotics of the spectrum [Lagarias]:

#{λn < T} = c1

√
T log T + c2

√
T + O(1) as T →∞.
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Approach II: Morse Potentials

The entire function
F (z) = Wk,z− 1

2
(t)

displays Riemann-ξ behavior:

Theorem (Lagarias, 2009)

1) F (z) is an entire function of order one and maximal type, real on R and
on <z = 1

2
2) F (z) = F (1− z)
3) (# of zeros in [−T ,T ]) = 2

πT log T + 2
π (2 log 2− 1− log t−)T + O(1)

4) All but finitely many zeros of F are on <z = 1
2 . All other zeros are on

the real line. All zeros are simple, except possibly at z = 1
2 .
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