Embedding Theorems for weighted Bergman spaces and applications to Control Theory

Sandra Pott
joint with Birgit Jacob (Wuppertal) and Jonathan R. Partington (Leeds)

Lunds Universitet

Hilbert Function Spaces, Gargnano, Italy, 21 May 2013
Outline

1. Linear Systems and infinite-time Admissibility
Outline

1. Linear Systems and infinite-time Admissibility

2. Embedding Theorem for Bergman spaces
Outline

1. Linear Systems and infinite-time Admissibility
2. Embedding Theorem for Bergman spaces
3. Applications
Outline

1. Linear Systems and infinite-time Admissibility
2. Embedding Theorem for Bergman spaces
3. Applications
Linear Systems

System S

A
Linear Systems and infinite-time Admissibility

System S

input u \rightarrow \rightarrow \rightarrow

$\leftarrow \downarrow A \uparrow$

output y \rightarrow
Linear Systems und infinite-time Admissibility

System S

output y

A
Linear System S

\[
\begin{aligned}
\dot{x}(t) &= Ax(t) + Bu(t) \\
x(0) &= x_0 \\
y(t) &=
\end{aligned}
\]
Linear System \mathcal{S}

$$\begin{align*}
\dot{x}(t) &= Ax(t) + Bu(t) \\
\text{exp stab. } C_0 \text{ semigroup } (T(t))_{t \geq 0} \\
x(0) &= x_0 \\
y(t) &=
\end{align*}$$
Linear System \mathcal{S}

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + Bu(t) \\
\text{exp stab. } C_0 \text{ semigroup } (T(t))_{t \geq 0} \\
\in \mathcal{U} \text{ input space} \\
x(0) &= x_0 \\
y(t) &= Cx(t) + Du(t)
\end{align*}
\]
Linear System \mathcal{S}

\[
\begin{align*}
\dot{x}(t) &= A x(t) \\
&\quad \text{exp stab. } C_0 \text{ semigroup } \left(T(t) \right)_{t \geq 0} \\
&\quad \in \mathcal{U} \text{ input space}
\end{align*}
\]

\[
\begin{align*}
x(0) &= x_0 \\
y(t) &=
\end{align*}
\]
Linear System S

\[\dot{x}(t) = Ax(t) + Bu(t) \]
exp stab. C_0 semigroup $(T(t))_{t \geq 0} \in U$ input space

\[x(0) = x_0 \in \mathcal{H} \text{ state space} \]

\[y(t) = \]
Linear Systems and infinite-time Admissibility

Linear System S

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + Bu(t) \\
\text{exp stab. } C_0 \text{ semigroup } (T(t))_{t \geq 0} \\
U &\in \text{input space}
\end{align*}
\]

\[
\begin{align*}
x(0) &= x_0 \\
H &\in \text{state space}
\end{align*}
\]

\[
\begin{align*}
y(t) &= Cx(t) + Du(t) \\
\end{align*}
\]
Linear System S

$$\begin{align*}
\dot{x}(t) &= Ax(t) \\
&\text{exp stab. } C_0 \text{ semigroup } (T(t))_{t \geq 0} \\
\end{align*}$$

\begin{align*}
\begin{align*}
\dot{x}(0) &= x_0 \\
&\in \mathcal{H} \text{ state space} \\
y(t) &= Cx(t)
\end{align*}
\end{align*}$$
Linear System

Linear System \mathcal{S}

- **States Equation:**
 \[
 \dot{x}(t) = Ax(t) \\
 \text{exp stab. } C_0 \text{ semigroup } (T(t))_{t \geq 0}
 \]

- **Initial Condition:**
 \[
 x(0) = x_0 \\
 \in \mathcal{H} \text{ state space}
 \]

- **Output Equation:**
 \[
 y(t) = Cx(t)
 \]

Assumption:
- $(T(t))$ is a normal semigroup (or eigenvectors (ϕ_n) of A form ONB of \mathcal{H})
Definition

\((A, C)\) is (infinite-time) admissible, if

\[
\int_0^\infty |Cx(t)|^2 dt \lesssim \|x_0\|^2
\]

for all initial values \(x_0 \in \mathcal{H}\)
(A, C) is (infinite-time) admissible, if

\[\int_0^\infty |Cx(t)|^2 dt \lesssim \|x_0\|^2 \]

for all initial values \(x_0 \in \mathcal{H}\)

(can be thought of as a well-posedness property)
Weiss’ Theorem

Theorem (Weiss ’92)

Let A be the generator of a normal exponentially stable C_0 semigroup and C an observation operator. Then TFAE:

1. (A, C) is admissible

2.

 $$\|C(z - A)^{-1}\| \lesssim \frac{1}{\Re z} \quad (z \in \mathbb{C}_+).$$

Let $x_0 = \sum_{n=0}^{\infty} \alpha_n \phi_n$. Then $x(t) = \sum_{n=0}^{\infty} \alpha_n e^{-\lambda_n t} \phi_n$, and

$$\int_0^{\infty} Cx(t)\overline{f(t)} dt = \sum_{n=0}^{\infty} C\phi_n \alpha_n \langle e^{-\lambda_n t}, f(t) \rangle = \sum_{n=0}^{\infty} C\phi_n \alpha_n \overline{Lf(\lambda_n)}.$$
Proof I (for diagonal A)

Let $x_0 = \sum_{n=0}^{\infty} \alpha_n \phi_n$. Then $x(t) = \sum_{n=0}^{\infty} \alpha_n e^{-\lambda_n t} \phi_n$, and

$$\int_0^{\infty} Cx(t) \overline{f(t)} dt = \sum_{n=0}^{\infty} C\phi_n \alpha_n \langle e^{-\lambda_n t}, f(t) \rangle = \sum_{n=0}^{\infty} C\phi_n \alpha_n \mathcal{L}f(\lambda_n).$$

Thus (A, C) is admissible, if and only if

$$\sum_{n=0}^{\infty} |C\phi_n|^2 |\mathcal{L}f(\lambda_n)|^2 \lesssim \|f\|_2^2$$

$$\Leftrightarrow \mu = \sum_{n=0}^{\infty} |C\phi_n|^2 \delta_{\lambda_n} \text{ is a Carleson measure}.$$
Let \(x_0 = \sum_{n=0}^{\infty} \alpha_n \phi_n \). Then \(x(t) = \sum_{n=0}^{\infty} \alpha_n e^{-\lambda_n t} \phi_n \), and

\[
C(z - A)^{-1} x_0 = \sum_{n=0}^{\infty} C\phi_n \alpha_n \frac{1}{z + \lambda_n},
\]
Proof II

Let \(x_0 = \sum_{n=0}^{\infty} \alpha_n \phi_n \). Then \(x(t) = \sum_{n=0}^{\infty} \alpha_n e^{-\lambda_n t} \phi_n \), and

\[
C(z - A)^{-1} x_0 = \sum_{n=0}^{\infty} C \phi_n \alpha_n \frac{1}{z + \lambda_n},
\]

Thus the resolvent condition (2) holds, if and only if

\[
\sum_{n=0}^{\infty} |C \phi_n|^2 \left| \frac{1}{z + \lambda_n} \right|^2 \lesssim \frac{1}{\Re z}
\]

\[\iff \sum_{n=0}^{\infty} |C \phi_n|^2 \delta \lambda_n \text{ is a Carleson measure}.\]

\[\]
\(\alpha\)-Admissibility

Definition

Let \(\alpha > -1 \). \((A, C)\) is \(\alpha\)-admissible, if

\[
\int_0^\infty t^\alpha |Cx(t)|^2 dt \lesssim \|x_0\|^2
\]

for all initial values \(x_0 \in \mathcal{H}\).

Theorem (Haak, Le Merdy 2005)

Let \(\alpha > 0 \) and let \(A \) be the generator of a diagonal exponentially stable \(C_0\) semigroup and \(C \) an observation operator. Then TFAE:

1. \((A, C)\) is \(\alpha\)-admissible
2.

\[
\|C(z - A)^{-1-\alpha}\| \lesssim \frac{1}{(\Re z)^{1+\alpha}} \quad (z \in \mathbb{C}_+).
\]
Further Generalisations

Results for $\alpha < 0$ are due to Wynn, results for Lebesgue measure on \mathbb{R}^+ positive measures of finite support are due to Harper.
Further Generalisations

Results for $\alpha < 0$ are due to Wynn, results for Lebesgue measure on \mathbb{R}^+ and positive measures of finite support are due to Harper.

Question

What is the most general class of weights $w(t)$ on \mathbb{R}^+, such that w-admissibility can be characterised by a resolvent-type condition?
Outline

1. Linear Systems and infinite-time Admissibility
2. Embedding Theorem for Bergman spaces
3. Applications
For a positive Borel measure \(\nu \) on \(\overline{\mathbb{C}_+} \), let

\[
A^2_\nu = \{ f : \mathbb{C}_+ \to \mathbb{C} \text{ hol.} : \sup_{\varepsilon > 0} \| f(\cdot + \varepsilon) \|_{L^2_\nu} < \infty \}.
\]

Question

What is the most general class of “radial” positive Borel measures \(\nu = \tilde{\nu} \otimes d\lambda \) on \(\overline{\mathbb{C}_+} \), such that embeddings

\[
A^2_\nu(\overline{\mathbb{C}_+}) \hookrightarrow L_\mu(\mathbb{C}_+)
\]

can be tested on (derivatives of) reproducing kernels?

(Results by Oleinek, Pau, Pelaez, Rättyä...)
Definition

Let $\nu = \tilde{\nu} \otimes d\lambda$ be a positive Borel measure on $\overline{C_+}$. We say that $A^2_\nu(C_+)$ is a Zen space, if the following (Δ_2)-condition holds:

$$\sup_{r>0} \frac{\tilde{\nu}([0, 2r))}{\tilde{\nu}([0, r))} < \infty.$$
The embedding theorem

Theorem (Jacob, Partington, P.)

Let $1 \leq p < \infty$, $A^p_\nu(C_+) \, \text{be a Zen space and let } \mu \, \text{be a positive Borel measure on } C_+$. Then TFAE:

1. The embedding

$$A^p_\nu(C_+) \hookrightarrow L^p_\mu(C_+)$$

is bounded.

2. $\mu(Q_l) \lesssim \nu(Q_l)$ for all intervals $l \subset i\mathbb{R}$

3. For a suitably large $N \in \mathbb{N}$,

$$\left\| \frac{1}{(z + \bar{w})^N} \right\|_{L^p_\mu} \lesssim \left\| \frac{1}{(z + \bar{w})^N} \right\|_{A^p_\nu} \quad \text{for all } w \in C_+$$
Embedding Theorem for Bergman spaces

Proof - for the standard Bergman space A^2

For $n \in \mathbb{Z}$, let μ_n be the restriction of the measure μ to the vertical strip

$$E_n = \{ z \in \mathbb{C}_+ : 2^{n+1} \leq \Re \xi < 2^{n+1} \}.$$

Clearly $\mu = \sum_{n=-\infty}^{\infty} \mu_n$.

Lemma

Let μ be a regular Borel measure on \mathbb{C}_+ with $M = \sup_{l \text{ interval}} \frac{\mu(Q_l)}{|l|^2} < \infty$. For each $n \in \mathbb{Z}$, let μ_n be the restriction of the measure μ to the vertical strip E_n.

Then for each n, μ_n is a Carleson measure for the shifted half plane \mathbb{C}_{2^n}, with Carleson constant

$$C(2^n, \mu_n) \leq 4^2 2^n M.$$
Lemma

Let \(f \in A^2 \). Then

\[
\| f \|_{A^2}^2 \approx \sum_{n=-\infty}^{\infty} 2^n \| f \|_{H^2(\mathbb{C}^n)}^2
\]

Hence

\[
\int_{\mathbb{C}^+} |f(z)|^2 d\mu(z) = \sum_{n=-\infty}^{\infty} \int_{\mathbb{C}^{2n}} |f(z)|^2 d\mu_n(z)
\]

\[
\leq M \sum_{n=-\infty}^{\infty} 4^2 2^n \| f \|_{H^2_n}^2 \lesssim \| f \|_{A^2}^2.
\]
It is not difficult to see that we can reduce general Zen spaces to the case

\[\tilde{\nu} = \sum_{n=-\infty}^{\infty} \beta_n \delta_{a_n}. \]

The key part is now to slice up the measure \(\mu \) in an appropriate way:
Let $N \in \mathbb{Z}$ and suppose that μ is supported on the closed half-plane $\overline{\mathbb{C}_{a_N}}$. Then there exist positive regular Borel measures μ_n, $n \geq N$, such that

1. $\mu = \sum_{n=N}^{\infty} \mu_n$;
2. μ_n is supported on the closed half-plane $\overline{\mathbb{C}_{a_n}}$;
3. There exists a constant $C'_\beta > 0$ such that for all intervals $I \subset \mathbb{R}$, $\mu_n(Q_I) \leq C'_\beta \nu_n(Q_I)$ ($n > N$), $\mu_N(Q_I) \leq C'_\beta \sum_{k=-\infty}^{N-1} \beta_k$.

Moreover, μ_n is a Carleson measure for the shifted half plane \mathbb{C}_{a_n-1}, with Carleson constant $C_{a_n-1}(\mu_n) \leq C'_c \beta_n$ ($n > N$), $C_{a_N-1}(\mu_N) \leq C'_c \sum_{k=-\infty}^{N-1} \beta_k$, where c is implicit in the definition of the sequence (a_n).

Key Lemma

Let \(N \in \mathbb{Z} \) and suppose that \(\mu \) is supported on the closed half-plane \(\overline{C_{a_N}} \). Then there exist positive regular Borel measures \(\mu_n, n \geq N \), such that

1. \(\mu = \sum_{n=N}^{\infty} \mu_n \);
Key Lemma

Let $N \in \mathbb{Z}$ and suppose that μ is supported on the closed half-plane $\overline{C_{a_N}}$. Then there exist positive regular Borel measures $\mu_n, n \geq N$, such that

1. $\mu = \sum_{n=N}^{\infty} \mu_n$;
2. μ_n is supported on the closed half-plane $\overline{C_{a_n}}$;
Key Lemma

Let $N \in \mathbb{Z}$ and suppose that μ is supported on the closed half-plane $\overline{C_{a_N}}$. Then there exist positive regular Borel measures μ_n, $n \geq N$, such that

1. $\mu = \sum_{n=N}^{\infty} \mu_n$;
2. μ_n is supported on the closed half-plane $\overline{C_{a_n}}$;
3. There exists a constant $C' > 0$ such that for all intervals $I \subset i\mathbb{R}$, $\mu_n(Q_I) \leq C' \nu_n(Q_I)$ ($n > N$), $\mu_N(Q_I) \leq C' \sum_{k=-\infty}^{N} \nu_k(Q_I)$.
Key Lemma

Let $N \in \mathbb{Z}$ and suppose that μ is supported on the closed half-plane $\overline{C_{a_N}}$. Then there exist positive regular Borel measures μ_n, $n \geq N$, such that

1. $\mu = \sum_{n=N}^{\infty} \mu_n$;
2. μ_n is supported on the closed half-plane $\overline{C_{a_n}}$;
3. There exists a constant $C' > 0$ such that for all intervals $I \subset i\mathbb{R}$,
 $$\mu_n(Q_I) \leq C' \nu_n(Q_I) \quad (n > N), \quad \mu_N(Q_I) \leq C' \sum_{k=-\infty}^{N} \nu_k(Q_I).$$

Moreover, μ_n is a Carleson measure for the shifted half plane $\overline{C_{a_{n-1}}}$, with Carleson constant

$$C_{a_{n-1}}(\mu_n) \leq \frac{C'}{c} \beta_n \quad (n > N), \quad C_{a_{N-1}}(\mu_N) \leq \frac{C'}{c} \sum_{k=-\infty}^{N} \beta_k,$$

where c is implicit in the definition of the sequence (a_n).

Sandra Pott (Lund)
A “slicewise” application of the Carleson Embedding Theorem now finishes the proof.
Outline

1. Linear Systems and infinite-time Admissibility
2. Embedding Theorem for Bergman spaces
3. Applications
Regular measures ν

Definition

Let $\nu = \tilde{\nu} \otimes d\lambda$ be a positive Borel measure on $\overline{\mathbb{C}}_+$. We say that ν is regular, if

\[
\sup_{r > 0} \frac{\tilde{\nu}([0, 2r))}{\tilde{\nu}([0, r))} < \infty,
\]

\[
\sup_{M > 0} \inf_{r > 0} \frac{\tilde{\nu}([0, Mr))}{\tilde{\nu}([0, r))} > 1.
\]
Let A^2_ν be a Zen space, $d_\nu = d\tilde{\nu} \otimes d\lambda$, with $\tilde{\nu}$ regular. Let $b : \mathbb{C}_+ \to \mathbb{C}$ be in the Bloch space $\mathcal{B}(\mathbb{C}_+)$. Then the little Hankel operator

$$A^2_\nu \rightarrow \overline{A^2_\nu}, \quad f \mapsto Q_\nu \overline{bf}$$

is bounded.

Here, Q_ν denotes the orthogonal projection $Q_\nu : L^2(\mathbb{C}_+, d_\nu) \to \overline{A^2_\nu}$.
Integral Operators

For $g : \mathbb{C}_+ \rightarrow \mathbb{C}$ analytic, consider the integral operator

$$f \mapsto T_g f(z) = \int_1^z g'(s)f(s)ds.$$

Theorem

Let A^2_ν be a Zen space with $\tilde{\nu}$ regular. Let $g : \mathbb{C}_+ \rightarrow \mathbb{C}$ be analytic. Then the integral operator

$$A^2_\nu \rightarrow A^2_\nu, \quad f \mapsto T_g f$$

is bounded, if and only if $g \in \mathcal{B}(\mathbb{C}_+)$.