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Layer potentials

Classically related to physical processes and used to produce
harmonic functions with prescribed boundary data.
Not yet tired of new applications and surprising theoretical turns.



Sobolev space

Ω ⊂ Rn, n ≥ 2, open Lipschitz domain with connected boundary.

H1(Ω) consists of all V ∈ L2(U) such that

‖V ‖2
H1(U) = ‖V ‖2

L2(U) + ‖∇V ‖2
L2(U) <∞.



Boundary spaces

Similarly H1(∂Ω).

For 0 < s < 1, we obtain Hs(∂U) on the real interpolation scale
between L2(∂Ω) and H1(∂Ω).

Alternatively Hs(∂Ω) is a Besov space,

‖v‖2
Hs(∂Ω) ∼ ‖v‖

2
L2(∂Ω) +

∫
∂Ω×∂Ω

|v(x)− v(y)|2

|x − y |n−1+2s
dσ(x) dσ(y),

where σ denotes (n − 1)-dimensional Hausdorff measure on ∂Ω.

We define H−s(∂Ω), 0 ≤ s ≤ 1, as the dual of Hs(∂Ω) under the
(sesquilinear) L2-pairing



Neumann-Poincaré operator

Fundamental solution for Laplace operator

G (x , y) =

{
−ω−1

n log |x − y |, n = 2,

ω−1
n |x − y |2−n, n ≥ 3,

where ωn is the measure of the unit sphere in Rn.

By the Neumann-Poincaré operator, or the boundary double layer
potential, K : H1/2(∂Ω)→ H1/2(∂Ω) we mean the operator

Kf (x) = −2

∫
∂Ω
∂ny G (x , y)f (y) dσ(y), x ∈ ∂Ω,

where ny denotes the outward normal derivative at y .



Boundedness of K

K : L2(∂Ω) −→ L2(∂Ω) is bounded [ Coifman, McIntosh and
Meyer 1982], [Verchota 1984].

K : H1/2(∂Ω) −→ H1/2(∂Ω) bounded by symmetry and
interpolation arguments.

K ∗ : H−1/2(∂Ω) −→ H−1/2(∂Ω) is our main character.



Spatial layer potentials

For x /∈ ∂Ω we write

Df (x) =

∫
∂Ω
∂ny G (x , y)f (y) dσ(y), x /∈ ∂Ω,

and call D the double layer potential. For g ∈ H−1/2(∂Ω) the
single layer potential S is defined by

Sg(x) =

∫
∂Ω

G (x , y)f (y) dσ(y), x ∈ Rn.



Energy norm

Denote the exterior of Ω by Ωe = Ω
c

and by H the space of
harmonic functions h on Ω ∪ Ωe with limx→∞ h(x) = 0 and finite
energy,

‖h‖2
H =

∫
Ω∪Ωe

|∇h|2 dx <∞.

To ensure that H is a Hilbert space we also require that if h 6= 0
and he = h|Ωe = 0, then hi = h|Ω is non-constant.



Traces

Each element h ∈ H has an interior trace
Trint h = Tr hi ∈ H1/2(∂Ω) and an exterior trace
Trext h = Tr he ∈ H1/2(∂Ω).

By the classical Poincaré inequality for bounded Lipschitz domains
U and the fact that the trace Tr : H1(U)→ H1/2(∂U) is
continuous, we see that the interior and the exterior traces are
continuous as maps from H to H1/2(∂Ω).

The interior and exterior trace normal derivatives
∂intn h, ∂extn h ∈ H−1/2(∂Ω) are defined by duality and via Green’s
formula.



Orthogonal decompositions

One interprets an element h ∈ H as a pair (hi , he) = (h|Ω, h|Ωe ),
with the corresponding orthogonal decomposition H = Hi ⊕ He .
We denote by Pi and Pe the orthogonal projections onto Hi and He

respectively, so that Pi (hi , he) = (hi , 0) and Pe(hi , he) = (0, he).

Second orthogonal decomposition: let

S = {h ∈ H : Trint h = Trext h} = S(H−1/2(∂Ω))

denote the space of single layer potentials in H, and let

D = {h ∈ H : ∂intn h = ∂extn h} = D(H
1/2
0 (∂Ω))

denote the space of double layer potentials. Then H = S⊕D and
we write Ps and Pd for the corresponding projections.



Jump formulae

For f ∈ H−1/2(∂Ω) (f ⊥ 1 if n = 2) and g ∈ H
1/2
0 (∂Ω), arguing

with smooth functions and the continuity of operators involved,
the well known jump formulae for S and K take on the form

Trint Sf = Trext Sf = Sf |∂Ω, ∂intn Sf =
1

2
(f − K ∗f ),

∂extn Sf =
1

2
(−f − K ∗f ), Trint Dg =

1

2
(−g − Kg),

Trext Dg =
1

2
(g − Kg), ∂intn Dg = ∂extn Dg .



Classical boundary problems as integral equations

Solve ∆u = 0 in Ω with Tr u = φ by searching

u = Dg , g ∈ H
1/2
0 (∂Ω).

And similarly ∆v = 0 in Ω with ∂nv = ψ

as
v = Sf , f ∈ H−1/2(∂Ω).

Hence the need to compute σ(K |H01/2) and study the
convergence of the Neumann series for (λ− K )−1.



Poincaré variational problem

Study the balance of energies

‖∇Sg‖2
e − ‖∇Sg‖2

i

‖∇Sg‖2
e + ‖∇Sg‖2

i

as a variational problem in g ∈ H
−1/2
0 (∂Ω).

Theorem
Let Ω ⊂ Rn, n ≥ 2 be an open, bounded Lipschitz domain with
connected boundary. The operator K ∗ : H−1/2(∂Ω)→ H−1/2(∂Ω)
is similar to the angle operator Ps(Pe − Pi )Ps : S −→ S.



Smooth boundary

In this case the successive singular values

σk = max
g⊥{g0,...,gk−1}

‖∇Sg‖2
e − ‖∇Sg‖2

i

‖∇Sg‖2
e + ‖∇Sg‖2

i

are attained at g = gk and the sequence g0, g1, g−1, g2, g−2, . . . is

complete in H
−1/2
0 .

Proof based on Plemelj intertwining formula

DS = SD∗

and the theory of symmetrizable operators (Carleman, Korn, M.G.
Krein).



Angle operator

K ∗ : H
−1/2
0 (∂Ω)→ H

−1/2
0 (∂Ω) can be regarded in two distinct

ways as the angle operator between the orthogonal decompositions

H = Hi ⊕ He = S⊕D.

Consequently K ∗ can be equally realized as a generalized
Beurling-Ahlfors singular integral transform.



Singular integral on Bergman type space

Define B(Ω) = {∇u ∈ L2(Ω) : ∆u = 0} and

ΠΩ(∇u)(x) = p. v.∇x

∫
Ω
∇yG (x , y) · ∇yu dy , x ∈ Ω,

Theorem
Let Ω ⊂ Rn be an open and bounded Lipschitz domain with
connected boundary. The angle operator Pi (Pd − Ps) : Hi → Hi is
unitarily equivalent to the operator BΩ : B(Ω)→ B(Ω),

BΩ = I + 2ΠΩ.

In addition, the operator K ∗ : H
−1/2
0 (∂Ω)→ H

−1/2
0 (∂Ω) is similar

to BΩ.



Real spectrum

Corollary

The spectrum of K : H1/2 → H1/2 coincides with that of BΩ,
except for the point 1. The essential spectra also coincide,

σess(K ) = σess(BΩ).

Furthermore, σ(K ) ⊂ R and any point λ ∈ σ(K ) \ σess(K ) is an
eigenvalue of finite multiplicity, since BΩ is self-adjoint.



2D, à la Schiffer

Complex variables help:

∇ζ∇zG (ζ, z) =
1

π

1

(ζ̄ − z̄)2
.

Theorem
Let Ω ⊂ R2 be an open and bounded Lipschitz domain with
connected boundary and let TΩ : L2

a(Ω)→ L2
a(Ω) denote the

operator

TΩf (z) = p. v.
1

π

∫
Ω

f (ζ)

(ζ̄ − z̄)2
dA(ζ), f ∈ L2

a(Ω), z ∈ Ω.

Then K ∗ : H
−1/2
0 (∂Ω)→ H

−1/2
0 (∂Ω) is similar to

TΩ : L2
a(Ω)→ L2

a(Ω), when the spaces are considered over the field
of reals. Here TΩf (z) = TΩf (z).



Symmetric spectrum

Note that the operator TΩ is defined regardless of topological
assumptions on Ω such as boundedness and smoothness. It is also
straightforward to check that if L is a fractional linear
transformation, then TΩ and TL(Ω) are unitarily equivalent.

Corollary

Let Ω ⊂ R2 be an open and bounded Lipschitz domain with
connected boundary. Excepting the point 1, the spectrum σ(K ) of
K : H1/2(∂Ω)→ H1/2(∂Ω) is symmetric with respect to the origin.

Corollary

Let Ω ⊂ R2 be an open and bounded Lipschitz domain with
connected boundary. Then σ(TΩ) = σ(TΩe ).



Fredholm eigenvalues of a planar domain

For ∂Ω smooth σ
(

K ∗|
H

−1/2
0

)
= σ(TΩ) is classically known as the

set of Fredholm eigenvalues of Ω.

We can define the largest Fredholm eigenvalue as |σ(TΩ)| for any
simply connected domain Ω whose boundary is given by a closed
Lipschitz curve in C ∗ = C ∪ {∞}.

While another generalized definition is given by Poincaré’s
variational problem.



Quasiconformal mapping estimates

Theorem (Krushkal)

Let Ω ( R2 be an unbounded convex domain with piecewise
C 1,α-smooth boundary, α > 0. Denote by 0 < θ < π the least
interior angle made between the boundary arcs of ∂Ω, taking into
consideration also the angle made at ∞. Then the largest
Fredholm eigenvalue of Ω is 1− θ/π.



Approximation

Working with TΩ is more flexible than computing singular integrals
on the boundary, for instance in approximations of the type
Ωn → Ω corresponding to SOT convergence of TΩn → TΩ. New
proof of:

Theorem (Kühnau)

Let Ω ⊂ R2 be a C 1,α-smooth curvilinear polygon. Then

|σ(TΩ)| ≥ max
1≤j≤N

|1− θj/π|



Conformal mapping application

Theorem
Let Ω be a C 1,α-smooth curvilinear polygon with 0 < θj < π for
1 ≤ j ≤ N such that its angles satisfy

N−1∑
j=1

(π − θj) + π + θN ≤ 2π,

possibly after a cyclic permutation of the vertex labels. Then

|σess(K )| = |σess(TΩ)| ≤ max
1≤j≤N

(1− θj/π) ,

where the double layer potential K is considered as an operator on
H1/2(∂Ω).



Spectrum of the NP operator in other functional spaces

Theorem (Radon, 1919)

Assume ∂Ω has bounded rotation. Then

|σess(K )| = max (1− θ/π) .

Proved by Carleman in his PhD dissertation, in 1916.

Extended to 3D and (some) Hölder space norms by Kral, Netuka,
Maz’ya and collaborators.



Lebesgue spaces

Shelepov’s formula in L2:

|σess(K )| = max

(
1− sin

θ

2

)
.

Irina Mitrea (2002): Lp(∂Ω), 1 < p <∞, with finitely many
corners on ∂Ω produces a non-real spectrum of K , with a closed
leminscate for each vertex.



Particular cases and numerical experiments

Werner 1997: σ(TR) of a rectangle R depends on the proportion
of the sides.

Helsing and Perfekt 2012: On the polarizability and capacitance of
the cube
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