Analytic Structure in Spectra of Multiplier Algebras

Richard Rochberg Washington University St, Louis MO, USA

Hilbert Function Spaces Gargnano May 2013

- I am going to talk about structure in the maximal ideal space of the multiplier algebras of certain Dirichlet type spaces.
- The main conclusions are:
 - For each of the Dirichlet type spaces \mathcal{D}_{α} , $0 < \alpha < 1$, there is analytic structure in the spectrum of its multiplier algebra. This is similar to the situation for the model case; $\mathcal{D}_0 = H^2$ and its multiplier algebra H^{∞} .
 - For the Dirichlet space, \mathcal{D}_1 , there is structure, but the details of the structure are not clear.

Outline

- Introduction of the players.
- ② Summary of classical results.
- **③** Analysis for the spaces \mathcal{D}_{α} , $0 < \alpha < 1$.
 - Showing there is analytic structure.
 - Ø How far does the analogy go?
- Analysis on the Dirichlet space, \mathcal{D}_1 ,
 - Why is the situation fundamentally different?
 - What we know.
- 5 Final Comments.

Introduction of the Players

• For $0 \le \alpha \le 1$, \mathcal{D}_{α} is the Hilbert space of $f \in \text{Hol}(\mathbb{D})$. $f = \sum a_n z^n \in \mathcal{D}_{\alpha}$ such that:

$$\|f\|_{\alpha}^{2} = \sum (n+1)^{\alpha} |a_{n}|^{2} \approx \|f\|_{H^{2}}^{2} + \int \int_{\mathbb{D}} |f'|^{2} (1-|z|^{2})^{1-\alpha} dA < \infty.$$

- \mathcal{D}_0 is the Hardy space; \mathcal{D}_1 is the Dirichlet space.
- The multiplier algebras: $\mathfrak{M}_{\alpha} = \{m : f \to mf \text{ bounded on } \mathcal{D}_{\alpha}\}$. With the operator norm \mathfrak{M}_{α} is a commutative Banach algebra.
- Generalized pseudohyperbolic metric: Let $\{\hat{k}_z\}$ be the normalized reproducing kernels for \mathcal{D}_{α} and set.

$$\delta_{\alpha}\left(z,w
ight)=\sqrt{1-\left|\left\langle \hat{k}_{z},\hat{k}_{w}
ight
angle
ight|^{2}}$$

 δ_0 is the classical pseudohyperbolic metric. Always, $0 \leq \delta_{\alpha} \leq 1$. There is a Schwarz-Pick style lemma; If $m \in \mathfrak{M}_{\alpha}$, ||m|| = 1, then $\delta_0(m(z), m(w)) \leq \delta_{\alpha}(z, w)$.

- \mathfrak{X}_{α} = spectrum of \mathfrak{M}_{α} = topologized maximal ideal space = topologized set of nonzero multiplicative linear functionals = generalized bounded point evaluations for \mathfrak{M}_{α} = a *large* compactification of \mathbb{D} to which every $m \in \mathfrak{M}_{\alpha}$ extends as a continuous function, \hat{m} , its Gelfand transform.
- The map $m \to \hat{m}$ is a contraction of \mathfrak{M}_{α} into $C(\mathfrak{X}_{\alpha})$. It is an isometry if and only if \mathfrak{M}_{α} is a *uniform algebra*, $\forall m ||m^2|| = ||m||^2$. In our situation this only happens for $\alpha = 0$. Surprisingly, that hasn't influenced the analysis.
- The model case is: $\mathcal{D}_0 = H^2$, $\delta_0 = \rho$, $\mathfrak{M}_0 = H^{\infty}$, contractive property of $\delta_0 =$ Schwarz-Pick lemma.

Gleason's Insight and the Search for Analytic Structure

 \bullet The Gleason metric on \mathfrak{X}_{α} is given by

$$\operatorname{dist}(\mu,
u) = \sup\left\{ |\hat{m}(\mu)| : \hat{m}(
u) = 0, \|\hat{m}\|_{\mathfrak{M}_{\alpha}} = 1
ight\}.$$

- On $\mathbb{D} \subset \mathfrak{X}_{\alpha}$ this agrees with δ_{α} and we continue that notation.
- δ_a is a metric on \mathfrak{X}_{α} . $0 \leq \delta_{\alpha} \leq 1$. $\delta_{\alpha} (\mu, \nu) < 1$ is an equivalence relation. The equivalence classes are called (Gleason) parts.
- For $m \in \mathfrak{X}_{\alpha}$, let $\mathcal{P}(m)$ be the part containing m.
- An analytic disk in \mathfrak{X}_{α} is a nonconstant map $\Phi : \mathbb{D} \to \mathfrak{X}_{\alpha}$ s.t. $\forall m \in \mathfrak{M}_{\alpha}, \ \hat{m}(\Phi(z))$ is holomorphic.

Theorem (Gleason 1957)

Any analytic disk is contained in a single part.

Classical Results

- H^{∞} is the algebra of all bounded analytic functions on \mathbb{D} with the supremum norm. It equals \mathfrak{M}_0 , the multiplier algebra of the classical Hardy space.
- A part *P* is called an *analytic disk* if the map Φ can be chosen to be a one to one map onto *P*.
- A set $Z = \{z_i\} \subset \mathbb{D}$ is an interpolating sequence for \mathfrak{M}_{α} if the restrictions to Z of the functions in \mathfrak{M}_{α} give all of $\ell^{\infty}(Z)$.

Theorem (I. J. Schark 1961)

Any point in the closure of an interpolating sequence is in an analytic disk.

Theorem (K. Hoffman 1967)

() $\forall m \in \mathfrak{M}_0$, either $\mathcal{P}(m) = m$ or $\mathcal{P}(m)$ is an analytic disk.

Theorem

 $0 < \alpha < 1$. If $Z = \{z_i\} \subset \mathbb{D}$ is an interpolating sequence for \mathfrak{M}_{α} then the Blaschke product B with zeros at Z is in \mathfrak{M}_{α} . Z is also an interpolating sequence for \mathfrak{M}_0 and hence, among other things.

$$\inf |(1 - |z_n|^2)B'(z_n)| = \delta > 0.$$
 (Later)

- This is automatic for $\alpha = 0$. Every such Z is the zero set of a Blaschke product and every Blaschke product is in H^{∞} .
- Two observations get the proof of the theorem started:
 - If Z is an interpolating sequence then $\sum (1 |z_i|^2)^{1-\alpha} \delta_{z_i}$ is a Carleson measure for \mathcal{D}_{α} .
 - If $(1-|z_i|^2)^{1-lpha} \left|B'\left(z\right)\right|^2 dxdy$ is a Carleson measure then $B \in \mathfrak{M}_{lpha}.$
- Finish the proof with a "spreading of Carleson measures" lemma.

Theorem (Analytic Discs)

Suppose $0 < \alpha < 1$. If $m \in \mathfrak{M}_{\alpha}$ is in the closure of an interpolating sequence $Z = \{z_n\}$ then m lies in analytic disk.

Using the interpolating Blaschke products, we can run the clasical proof.

- Let *B* be the Blaschke product with zeros at *Z*. Let L_n be the disk automorphism which takes 0 to z_n , and $\{L_{\gamma}(0)\}$ a net which converges to *m*. General topology insures that the net of maps $L_{\gamma}: \mathbb{D} \to \mathbb{D}$ has a limit map $L: \mathbb{D} \to \mathfrak{X}_{\alpha}$ with L(0) = m.
- For any $f \in \mathfrak{M}_{\alpha}$, $\hat{f}(L(z)) = \lim \hat{f}(L_{\gamma}(z))$ is a limit of bounded holomorphic functions, hence the limit function is holomorphic, and we also have pointwise convergence of the derivatives.
- We now show $(\hat{B} \circ L)'(0) \neq 0$ and conclude L is nonconstant:

$$(\hat{B} \circ L)'(0) = \lim (B \circ L_{\gamma})'(0) = \lim B'(z_{\gamma})L'_{\gamma}(0)$$

= $\lim (1 - |z_{\gamma}|^2)L'_{\gamma}(0) \neq 0.$

- Much of Hoffman's analysis is based on the fact that interpolating sequences are zero sets of Blaschke products with very specialzed properties; together with a careful analysis of those products.
- For example, recalling $\delta(B) = \inf |(1 |z_n|^2)B'(z_n)|$. B can be factored $B = B_1B_2$ with $\delta(B_i) \ge \delta(B)^{1/2}$.
- Note that (Later) shows up.
- His results hold for the Blaschke products in \mathfrak{M}_{α} and hence substantial parts of his analysis go through.
- At other places the path is not clear. For instance: if f ∈ M_α, must the Blaschke product with the same zeros as f also be in M_α?

Those Ideas Don't Work for the Dirichlet Space

- Neither \mathcal{D}_1 nor the multiplier algebra \mathfrak{M}_1 contain Blaschke products.
- More fundamentally, schemes similar to the previous one can't work.

Theorem

Suppose $\{L_n\}$ are maps of \mathbb{D} to \mathbb{D} and $|L_n(0)| \to 1$. If L is map of \mathbb{D} into \mathfrak{X}_1 obtained as a limit of some $\{L_n\}$ then L is a constant map.

Proof.

Pick
$$w \in \mathbb{D}$$
 and set $L_n(0) = heta_n$, $L_n(w) = \lambda_n$

- **1** By Schwarz-Pick $\forall n, 1 > \rho(0, w) \ge \rho(\theta_n, \lambda_n)$.
- **2** Extended elementary calculation shows that: If $1 > c \ge \rho(\theta_n, \lambda_n)$ and $|\theta_n| \to 1$ then $\delta_1(\theta_n, \lambda_n) \to 0$.

3
$$0 = \limsup \delta_1(\theta_n, \lambda_n) \ge \delta_1(\limsup \theta_n, \lim \lambda_n)$$
.

Positive Results for the Dirichlet Space

Generating new interpolating sequences from old

Theorem (New Interpolating Sequences)

Suppose $0 < \alpha \le 1$ and that $\{z_n\} = Z \in IS_{\alpha}$. There is an $\varepsilon = \varepsilon(S) > 0$ such that if $\{w_n\} = W$ is another sequence in \mathbb{D} with $\delta_{\alpha}(z_n, w_n) < \varepsilon$, n = 1, 2, ..., then $W \in IS_{\alpha}$.

Proof.

One needs to show that W is separated in the δ_{α} metric and that the associated measure satisfies a Carleson measure condition.

- The separation follows from the construction.
- Information about the quantities $\delta_{\alpha}(w_n, w_m)$ gives information about the entries of the Gramm matrix associated with W.
- The Carleson measure condition is verified by working with that Gramm matrix.

Theorem (Dirichlet Parts)

If $m \in \mathfrak{X}_1$ is in the closure of an interpolating sequence Z, then $\mathcal{P}(m)$ contains infinitely many points.

Proof.

- First we outline how to find one additional point.
 - Use the previous theorem to construct Z' near Z and such that $Z' \cup Z$ is an interpolating sequence.
 - Use the fact that Z' is near Z to show that $\overline{Z'}$ meets $\mathcal{P}(m)$ at some point m'.
 - Use the fact that $Z' \cup Z$ is an interpolating sequence to show $m' \neq m$.
- To get the full result, construct Z', Z'', Z''' etc.

The Generality of Theorem "Dirichlet Parts".

- The previous theorem used the following facts about the Dirichlet space
 - (*) *H* is a reproducing kernel Hilbert space whose kernel has the Complete Pick Property.
 - (**) If Z is a sequence of points with Gramm matrix (k_{ij}) and if that matrix is bounded, then so is the matrix $(|k_{ij}|)$.
- If we have those then, thanks to many people over the years (Boe especially):
 - The interpolation sequences for both H and its multiplier algebra are characterized by separation in the δ_H metric and the associated measure satisfying a Carleson measure condition.
 - The analog of theorem "New Interpolating Sequences" holds.
- At that point a version of the theorem "Dirichlet Parts" holds.

- The proof of the previous theorem also applies to the spaces \mathcal{D}_{α} , $0 < \alpha < 1$. It was not mentioned because the "Analytic Disks" theorem is a much stronger result.
- The proof that was outlined for "Analytic Disks" made fundamental use of Blaschke products. That suggests that the result may not be very general.
- However there is a more general construction.

Generalized Blaschke Products

- Suppose H is a function space which satisfies (*) and (**).
- For $z \in \mathbb{D}$, let β_z be the function in the multiplier algebra which maximizes $\operatorname{Re} \beta_z(0)$, subject to $\|\beta_z\| = 1$, $\beta_z(z) = 0$.
- For $Z = \{z_n\} \subset \mathbb{D}$, let $\mathfrak{B}_Z(w)$ be the associated generalized Blaschke product.

$$\mathfrak{B}_Z(w)=\prod_n\beta_{z_n}(w)$$

(Sawyer, Function theory..., 2009; Ch. 5)

- If Z is an interpolating sequence for H then \mathfrak{B}_Z converges to a multiplier of norm at most one with exact zero set Z..
- For $\mathcal{D}_0 = H^2$ this produces classical Blaschke products. For \mathcal{D}_{α} , $\alpha > 0$ they are different.
- However they could have been used in the earlier proof because

$$\inf |(1-|z_n|^2)\mathfrak{B}'_{Z}(z_n)| = \delta > 0.$$
 (1)

The Return to "Later"

 We are going to rewrite (1). For functions in the multiplier algebra introduce the generalized differential operator D_H:

$$(\mathfrak{D}_{H}f)(w) = \lim_{\omega \to w} \left| \frac{f(w) - f(\omega)}{\delta_{H}(w, \omega)} \right|$$

• Suppose now that $H = \mathcal{D}_{\alpha}$, $\alpha \neq 1$; i.e., not the Dirichlet space. The following are equivalent

$$\inf |(1-|z_n|^2)\mathfrak{B}'_Z(z_n)| = \delta > 0.$$

2

$$\inf |\mathfrak{D}_H \mathfrak{B}_Z(z_n)| = \delta > 0.$$

• Although the formulas are fancy, the verifications are elementary and computational.

Rochberg ()

• Now suppose we consider $H = D_1$, the Dirichlet space. The definitions continue to make sense. Should we consider

$$egin{array}{lll} \inf |(1-|z_n|^2)\mathfrak{B}'_Z(z_n)|&=&\delta>0, ext{ or }\ \inf |\mathfrak{D}_H\mathfrak{B}_Z(z_n)|&=&\delta>0? \end{array}$$

- The earlier proof suggests trying to salvage the first.
- However the first always fails and the second is always true.
- Perhaps this suggests a way to go forward.

۵

Thank You !!