Reverse Carleson measures on $\mathcal{H}(b)$ spaces

A. Blandigneres, E. Fricain, F. Gaunard, A. Hartmann, W. Ross

Gargnano 2013

2 / 39

- \bullet ${\mathscr H}$ is a Hilbert space of analytic functions on ${\mathbb D}$
- $\mu \in M_+(\mathbb{D})$ (finite positive Borel measures on \mathbb{D})

0

$$||f||_{\mu} := \left(\int |f|^2 d\mu\right)^{1/2}$$

• μ is a direct Carleson measure for \mathcal{H} if

$$||f||_{\mu} \lesssim ||f||_{\mathcal{H}}, \quad f \in \mathcal{H}$$

$$||f||_{\mathcal{H}} \lesssim ||f||_{\mu}, \quad f \in \mathcal{H}$$

0

- \bullet ${\mathscr H}$ is a Hilbert space of analytic functions on ${\mathbb D}$
- $\mu \in M_+(\mathbb{D})$ (finite positive Borel measures on \mathbb{D})

$$||f||_{\mu} := \left(\int |f|^2 d\mu \right)^{1/2}$$

• μ is a direct Carleson measure for ${\mathcal H}$ if

$$||f||_{\mu} \lesssim ||f||_{\mathcal{H}}, \quad f \in \mathcal{H}$$

$$||f||_{\mathcal{H}} \lesssim ||f||_{\mu}, \quad f \in \mathcal{H}$$

- \bullet ${\mathscr H}$ is a Hilbert space of analytic functions on ${\mathbb D}$
- $\mu \in M_+(\mathbb{D})$ (finite positive Borel measures on \mathbb{D})

4

$$||f||_{\mu} := \left(\int |f|^2 d\mu\right)^{1/2}$$

• μ is a direct Carleson measure for ${\mathscr H}$ if

$$||f||_{\mu} \lesssim ||f||_{\mathcal{H}}, \quad f \in \mathcal{H}$$

$$||f||_{\mathcal{H}} \lesssim ||f||_{\mu}, \quad f \in \mathcal{H}$$

- ullet \mathscr{H} is a Hilbert space of analytic functions on $\mathbb D$
- $\mu \in M_+(\mathbb{D})$ (finite positive Borel measures on \mathbb{D})

0

$$||f||_{\mu} := \left(\int |f|^2 d\mu\right)^{1/2}$$

• μ is a direct Carleson measure for \mathscr{H} if

$$||f||_{\mu} \lesssim ||f||_{\mathscr{H}}, \quad f \in \mathscr{H}$$

$$||f||_{\mathscr{H}} \lesssim ||f||_{\mu}, \quad f \in \mathscr{H}$$

- ullet \mathscr{H} is a Hilbert space of analytic functions on $\mathbb D$
- $\mu \in M_+(\mathbb{D})$ (finite positive Borel measures on \mathbb{D})

•

$$||f||_{\mu} := \left(\int |f|^2 d\mu\right)^{1/2}$$

• μ is a direct Carleson measure for \mathcal{H} if

$$||f||_{\mu} \lesssim ||f||_{\mathscr{H}}, \quad f \in \mathscr{H}$$

$$||f||_{\mathcal{H}} \lesssim ||f||_{\mu}, \quad f \in \mathcal{H}$$

Technical detail

We often want to write

$$||f||_{\mu} \lesssim ||f||_{\mathscr{H}} \quad \text{and} \quad ||f||_{\mathscr{H}} \lesssim ||f||_{\mu} \quad \text{for} \quad \mu \in M_{+}(\mathbb{D}^{-}).$$

We will often consider such problems for $f \in \mathcal{H} \cap \mathcal{C}(\mathbb{D}^-)$ so the integrals are properly defined.

These technical issues usually resolve themselves.

Technical detail

We often want to write

$$||f||_{\mu} \lesssim ||f||_{\mathscr{H}} \quad \text{and} \quad ||f||_{\mathscr{H}} \lesssim ||f||_{\mu} \quad \text{for} \quad \mu \in M_{+}(\mathbb{D}^{-}).$$

We will often consider such problems for $f \in \mathcal{H} \cap \mathcal{C}(\mathbb{D}^-)$ so the integrals are properly defined.

These technical issues usually resolve themselves.

Technical detail

We often want to write

$$||f||_{\mu} \lesssim ||f||_{\mathscr{H}} \quad \text{and} \quad ||f||_{\mathscr{H}} \lesssim ||f||_{\mu} \quad \text{for} \quad \mu \in M_{+}(\mathbb{D}^{-}).$$

We will often consider such problems for $f \in \mathcal{H} \cap \mathcal{C}(\mathbb{D}^-)$ so the integrals are properly defined.

These technical issues usually resolve themselves.

Reproducing kernel thesis

Suppose

$$k_{\lambda}^{\mathscr{H}}, \quad \lambda \in \mathbb{D},$$

are the reproducing kernels for \mathcal{H} , i.e.,

$$f(\lambda) = \langle f, k_{\lambda}^{\mathscr{H}} \rangle_{\mathscr{H}}, \quad \lambda \in \mathbb{D}, f \in \mathscr{H}.$$

One can often need only test

$$||k_{\lambda}^{\mathcal{H}}||_{\mathcal{H}} \lesssim ||k_{\lambda}^{\mathcal{H}}||_{\mu}$$

or

$$||k_{\lambda}^{\mathcal{H}}||_{\mu} \lesssim ||k_{\lambda}^{\mathcal{H}}||_{\mathcal{H}}$$

This is called the *reproducing kernel thesis*.

Reproducing kernel thesis

Suppose

$$k_{\lambda}^{\mathscr{H}}, \quad \lambda \in \mathbb{D},$$

are the reproducing kernels for \mathcal{H} , i.e.,

$$f(\lambda) = \langle f, k_{\lambda}^{\mathscr{H}} \rangle_{\mathscr{H}}, \quad \lambda \in \mathbb{D}, f \in \mathscr{H}.$$

One can often need only test

$$||k_{\lambda}^{\mathscr{H}}||_{\mathscr{H}} \lesssim ||k_{\lambda}^{\mathscr{H}}||_{\mu}$$

or

$$\|k_\lambda^{\mathscr{H}}\|_{\mu} \lesssim \|k_\lambda^{\mathscr{H}}\|_{\mathscr{H}}$$

This is called the reproducing kernel thesis.

Reproducing kernel thesis

Suppose

$$k_{\lambda}^{\mathscr{H}}, \quad \lambda \in \mathbb{D},$$

are the reproducing kernels for \mathcal{H} , i.e.,

$$f(\lambda) = \langle f, k_{\lambda}^{\mathscr{H}} \rangle_{\mathscr{H}}, \quad \lambda \in \mathbb{D}, f \in \mathscr{H}.$$

One can often need only test

$$||k_{\lambda}^{\mathscr{H}}||_{\mathscr{H}} \lesssim ||k_{\lambda}^{\mathscr{H}}||_{\mu}$$

or

$$||k_{\lambda}^{\mathscr{H}}||_{\mu} \lesssim ||k_{\lambda}^{\mathscr{H}}||_{\mathscr{H}}$$

This is called the *reproducing kernel thesis*.

Carleson's results for H^2

Theorem (Carleson (1962))

$$\int |f|^2 d\mu \lesssim \int |f|^2 dm, \quad f \in H^2 \cap \mathcal{C}(\mathbb{D}^-);$$

$$\int |k_{\lambda}|^2 d\mu \lesssim \int |k_{\lambda}|^2 dm, \quad \lambda \in \mathbb{D};$$

$$\sup_{I} \frac{\mu(S(I))}{m(I)} < +\infty.$$

Theorem (Carleson (1962))

$$\int |f|^2 d\mu \lesssim \int |f|^2 dm, \quad f \in H^2 \cap \mathcal{C}(\mathbb{D}^-);$$

$$\int |k_{\lambda}|^2 d\mu \lesssim \int |k_{\lambda}|^2 dm, \quad \lambda \in \mathbb{D};$$

$$\sup_{I} \frac{\mu(S(I))}{m(I)} < +\infty$$

Theorem (Carleson (1962))

$$\int |f|^2 d\mu \lesssim \int |f|^2 dm, \quad f \in H^2 \cap \mathcal{C}(\mathbb{D}^-);$$

$$\int |k_{\lambda}|^2 d\mu \lesssim \int |k_{\lambda}|^2 dm, \quad \lambda \in \mathbb{D};$$

$$\sup_{I} \frac{\mu(S(I))}{m(I)} < +\infty.$$

Theorem (Carleson (1962))

$$\int |f|^2 d\mu \lesssim \int |f|^2 dm, \quad f \in H^2 \cap \mathcal{C}(\mathbb{D}^-);$$

$$\int |k_{\lambda}|^2 d\mu \lesssim \int |k_{\lambda}|^2 dm, \quad \lambda \in \mathbb{D};$$

$$\sup_{I} \frac{\mu(S(I))}{m(I)} < +\infty.$$

Theorem (Carleson (1962))

$$\int |f|^2 d\mu \lesssim \int |f|^2 dm, \quad f \in H^2 \cap \mathcal{C}(\mathbb{D}^-);$$

$$\int |k_{\lambda}|^2 d\mu \lesssim \int |k_{\lambda}|^2 dm, \quad \lambda \in \mathbb{D};$$

$$\sup_{I} \frac{\mu(S(I))}{m(I)} < +\infty.$$

Generalized like crazy

- Carleson Hardy space
- Hastings/Oleinik/Luecking Bergman space
- Wu/Arcozzi/Rochberg/Sawyer (certain) Dirichlet spaces
- Girela/Palaez (certain other types of) Dirichlet spaces
- Chacon (certain other types of) Dirichlet spaces
- Arcozzi/Rochberg/Sawyer Besov spaces
- Spaces on \mathbb{B}^n
- Spaces on pseudo-convex domains in \mathbb{C}^n
- \bullet Aleksandrov/Volberg/Treil/Baranov $(\Theta H^2)^{\perp}$ spaces
- \bullet Baranov/Fricain/Mashreghi $\mathscr{H}(b)$ spaces

Reverse Carleson for H^2

Theorem (Queffelec et al (2010), Hartmann et al (2013))

$$\int |f|^2 dm \lesssim \int |f|^2 d\mu, \quad f \in H^2 \cap \mathcal{C}(\mathbb{D}^-);$$

$$\int |k_{\lambda}|^2 dm \lesssim \int |k_{\lambda}|^2 d\mu, \quad \lambda \in \mathbb{D};$$

$$\inf_{I} \frac{\mu(S(I))}{m(I)} > 0.$$

Theorem (Queffelec et al (2010), Hartmann et al (2013))

$$\int |f|^2 dm \lesssim \int |f|^2 d\mu, \quad f \in H^2 \cap \mathcal{C}(\mathbb{D}^-);$$

$$\int |k_{\lambda}|^2 dm \lesssim \int |k_{\lambda}|^2 d\mu, \quad \lambda \in \mathbb{D};$$

$$\inf_{I} \frac{\mu(S(I))}{m(I)} > 0.$$

Theorem (Queffelec et al (2010), Hartmann et al (2013))

$$\int |f|^2 dm \lesssim \int |f|^2 d\mu, \quad f \in H^2 \cap \mathcal{C}(\mathbb{D}^-);$$

$$\int |k_{\lambda}|^2 dm \lesssim \int |k_{\lambda}|^2 d\mu, \quad \lambda \in \mathbb{D};$$

$$\inf_{I} \frac{\mu(S(I))}{m(I)} > 0.$$

Theorem (Queffelec et al (2010), Hartmann et al (2013))

$$\int |f|^2 dm \lesssim \int |f|^2 d\mu, \quad f \in H^2 \cap \mathcal{C}(\mathbb{D}^-);$$

$$\int |k_{\lambda}|^2 dm \lesssim \int |k_{\lambda}|^2 d\mu, \quad \lambda \in \mathbb{D};$$

$$\inf_{I} \frac{\mu(S(I))}{m(I)} > 0.$$

Other RCE

- Bergman spaces (Luecking 1985)
- Dirichlet-type spaces (Chacon 2010)
- $\bullet (\Theta H^2)^{\perp}$
 - ightharpoonup deBranges
 - ► Aleksandrov
 - ► Treil
 - ► Volberg
 - ► Baranov
 - ► BFGHR

THE BASICS OF DEBRANGES-ROVNYAK SPACES

$$\mathcal{H}(b)$$
 spaces

- $\mathbf{b}(H^{\infty}) = \{g \in H^{\infty}(\mathbb{D}) : ||g||_{\infty} \leqslant 1\}$
- For $b \in \mathbf{b}(H^{\infty})$

$$k_{\lambda}^{b}(z) := \frac{1 - \overline{b(\lambda)}b(z)}{1 - \overline{\lambda}z}$$

$$\sum_{i,j} c_i \overline{c_j} k_{\lambda_i}^b(\lambda_j) > 0.$$

Define

$$\left\| \sum_{j=1}^{n} c_j k_{\lambda_j}^b \right\|_b^2 := \sum_{1 \leqslant i, j \leqslant n} c_i \overline{c_j} k_{\lambda_i}^b(\lambda_j)$$

$$\mathcal{H}(b)$$
 spaces

- $\mathbf{b}(H^{\infty}) = \{g \in H^{\infty}(\mathbb{D}) : \|g\|_{\infty} \leqslant 1\}$
- For $b \in \mathbf{b}(H^{\infty})$

$$k_{\lambda}^{b}(z) := \frac{1 - \overline{b(\lambda)}b(z)}{1 - \overline{\lambda}z}$$

$$\sum_{i,j} c_i \overline{c_j} k_{\lambda_i}^b(\lambda_j) > 0.$$

Define

$$\left\| \sum_{j=1}^{n} c_{j} k_{\lambda_{j}}^{b} \right\|_{b}^{2} := \sum_{1 \leq i, j \leq n} c_{i} \overline{c_{j}} k_{\lambda_{i}}^{b}(\lambda_{j})$$

$$\mathcal{H}(b)$$
 spaces

- $\mathbf{b}(H^{\infty}) = \{g \in H^{\infty}(\mathbb{D}) : \|g\|_{\infty} \leqslant 1\}$
- For $b \in \mathbf{b}(H^{\infty})$

$$k_{\lambda}^{b}(z) := \frac{1 - \overline{b(\lambda)}b(z)}{1 - \overline{\lambda}z}$$

$$\sum_{i,j} c_i \overline{c_j} k_{\lambda_i}^b(\lambda_j) > 0.$$

Define

$$\left\| \sum_{j=1}^{n} c_{j} k_{\lambda_{j}}^{b} \right\|_{b}^{2} := \sum_{1 \leq i, j \leq n} c_{i} \overline{c_{j}} k_{\lambda_{i}}^{b}(\lambda_{j})$$

$$\mathcal{H}(b)$$
 spaces

- $\mathbf{b}(H^{\infty}) = \{g \in H^{\infty}(\mathbb{D}) : \|g\|_{\infty} \leqslant 1\}$
- For $b \in \mathbf{b}(H^{\infty})$

$$k_{\lambda}^{b}(z) := \frac{1 - b(\lambda)b(z)}{1 - \overline{\lambda}z}$$

$$\sum_{i,j} c_i \overline{c_j} k_{\lambda_i}^b(\lambda_j) > 0.$$

Define

$$\left\| \sum_{j=1}^{n} c_{j} k_{\lambda_{j}}^{b} \right\|_{b}^{2} := \sum_{1 \leqslant i, j \leqslant n} c_{i} \overline{c_{j}} k_{\lambda_{i}}^{b}(\lambda_{j})$$

$$\mathcal{H}(b)$$
 spaces

- $\mathbf{b}(H^{\infty}) = \{g \in H^{\infty}(\mathbb{D}) : \|g\|_{\infty} \leqslant 1\}$
- For $b \in \mathbf{b}(H^{\infty})$

$$k_{\lambda}^{b}(z) := \frac{1 - \overline{b(\lambda)}b(z)}{1 - \overline{\lambda}z}$$

$$\sum_{i,j} c_i \overline{c_j} k_{\lambda_i}^b(\lambda_j) > 0.$$

• Define

$$\left\| \sum_{j=1}^{n} c_{j} k_{\lambda_{j}}^{b} \right\|_{b}^{2} := \sum_{1 \leqslant i, j \leqslant n} c_{i} \overline{c_{j}} k_{\lambda_{i}}^{b}(\lambda_{j})$$

$$\mathcal{H}(b)$$
 facts

• k_{λ}^{b} is the reproducing kernel for $\mathscr{H}(b)$, i.e.,

$$f(\lambda) := \langle f, k_{\lambda}^b \rangle_b, \quad \lambda \in \mathbb{D}, f \in \mathscr{H}(b).$$

- $\mathcal{H}(b)$ is contractively contained in H^2 .
- When $||b||_{\infty} < 1$, then $\mathcal{H}(b) = H^2$ with an equivalent norm.
- When b is inner, then $\mathcal{H}(b) = (bH^2)^{\perp}$.

$$\mathcal{H}(b)$$
 facts

• k_{λ}^{b} is the reproducing kernel for $\mathcal{H}(b)$, i.e.,

$$f(\lambda) := \langle f, k_{\lambda}^b \rangle_b, \quad \lambda \in \mathbb{D}, f \in \mathscr{H}(b).$$

- $\mathcal{H}(b)$ is contractively contained in H^2 .
- When $||b||_{\infty} < 1$, then $\mathcal{H}(b) = H^2$ with an equivalent norm.
- When b is inner, then $\mathcal{H}(b) = (bH^2)^{\perp}$.

$$\mathcal{H}(b)$$
 facts

• k_{λ}^{b} is the reproducing kernel for $\mathcal{H}(b)$, i.e.,

$$f(\lambda) := \langle f, k_{\lambda}^b \rangle_b, \quad \lambda \in \mathbb{D}, f \in \mathscr{H}(b).$$

- $\mathcal{H}(b)$ is contractively contained in H^2 .
- When $||b||_{\infty} < 1$, then $\mathcal{H}(b) = H^2$ with an equivalent norm.
- When b is inner, then $\mathcal{H}(b) = (bH^2)^{\perp}$.

$$\mathcal{H}(b)$$
 facts

• k_{λ}^{b} is the reproducing kernel for $\mathscr{H}(b)$, i.e.,

$$f(\lambda) := \langle f, k_{\lambda}^b \rangle_b, \quad \lambda \in \mathbb{D}, f \in \mathcal{H}(b).$$

- $\mathcal{H}(b)$ is contractively contained in H^2 .
- When $||b||_{\infty} < 1$, then $\mathcal{H}(b) = H^2$ with an equivalent norm.
- When b is inner, then $\mathcal{H}(b) = (bH^2)^{\perp}$.

Definition

 $b \in \mathbf{b}(H^{\infty})$ is non-extreme if

$$\int_{\mathbb{T}} \log(1 - |b|) dm > -\infty$$

Proposition

If $b \in \mathbf{b}(H^{\infty})$ is non-extreme, then there is a unique outer a with a(0) > 0 and such that

$$|a|^2 + |b|^2 = 1$$

almost everywhere on T.

Proposition

If $b \in \mathbf{b}(H^{\infty})$ is non-extreme then $\mathcal{H}(b) \cap \mathcal{C}(\mathbb{D}^{-})$ is dense in $\mathcal{H}(b)$.

Definition

 $b \in \mathbf{b}(H^{\infty})$ is non-extreme if

$$\int_{\mathbb{T}} \log(1-|b|)dm > -\infty.$$

Proposition

If $b \in \mathbf{b}(H^{\infty})$ is non-extreme, then there is a unique outer a with a(0) > 0 and such that

$$|a|^2 + |b|^2 = 1$$

almost everywhere on T.

Proposition

If $b \in \mathbf{b}(H^{\infty})$ is non-extreme then $\mathcal{H}(b) \cap \mathcal{C}(\mathbb{D}^{-})$ is dense in $\mathcal{H}(b)$.

Definition

 $b \in \mathbf{b}(H^{\infty})$ is non-extreme if

$$\int_{\mathbb{T}} \log(1-|b|)dm > -\infty.$$

Proposition

If $b \in \mathbf{b}(H^{\infty})$ is non-extreme, then there is a unique outer a with a(0) > 0 and such that

$$|a|^2 + |b|^2 = 1$$

almost everywhere on \mathbb{T} .

Proposition

If $b \in \mathbf{b}(H^{\infty})$ is non-extreme then $\mathcal{H}(b) \cap \mathcal{C}(\mathbb{D}^{-})$ is dense in $\mathcal{H}(b)$.

Definition

 $b \in \mathbf{b}(H^{\infty})$ is non-extreme if

$$\int_{\mathbb{T}} \log(1-|b|)dm > -\infty.$$

Proposition

If $b \in \mathbf{b}(H^{\infty})$ is non-extreme, then there is a unique outer a with a(0) > 0 and such that

$$|a|^2 + |b|^2 = 1$$

almost everywhere on \mathbb{T} .

Proposition

If $b \in \mathbf{b}(H^{\infty})$ is non-extreme then $\mathcal{H}(b) \cap \mathcal{C}(\mathbb{D}^{-})$ is dense in $\mathcal{H}(b)$.

$$\mathcal{M}(a)$$

Let
$$\mathcal{M}(a) := T_a H^2 = aH^2$$
 endwed with the norm $||ag||_{\mathcal{M}(a)} := ||g||_2$.

Proposition

If $b \in \mathbf{b}(H^{\infty})$ is non-extreme then

- $\mathfrak{M}(a) \subset \mathcal{H}(b)$ contractively.

$$\inf_{z \in \mathbb{D}} (|a(z)| + |b(z)|) > 0$$
 and $T_{a/\overline{a}}$ is invertible

Recall that $T_{a/\bar{a}}$ is invertible $\Leftrightarrow |a|^2$ is a Muckenhoupt weight.

$$\mathcal{M}(a)$$

Let
$$\mathcal{M}(a) := T_a H^2 = aH^2$$
 endwed with the norm $||ag||_{\mathcal{M}(a)} := ||g||_2$.

Proposition

If $b \in \mathbf{b}(H^{\infty})$ is non-extreme then

- $\mathfrak{M}(a) \subset \mathcal{H}(b)$ contractively.

$$\inf_{z \in \mathbb{D}} (|a(z)| + |b(z)|) > 0$$
 and $T_{a/\overline{a}}$ is invertible

Recall that $T_{a/\overline{a}}$ is invertible $\Leftrightarrow |a|^2$ is a Muckenhoupt weight.

$$\mathcal{M}(a)$$

Let $\mathcal{M}(a) := T_a H^2 = aH^2$ endwed with the norm $||ag||_{\mathcal{M}(a)} := ||g||_2$.

Proposition

If $b \in \mathbf{b}(H^{\infty})$ is non-extreme then

 $\inf_{z\in\mathbb{D}}(|a(z)|+|b(z)|)>0$ and $T_{a/\overline{a}}$ is invertible

Recall that $T_{a/\bar{a}}$ is invertible $\Leftrightarrow |a|^2$ is a Muckenhoupt weight.

$$\mathcal{M}(a)$$

Let $\mathcal{M}(a) := T_a H^2 = aH^2$ endwed with the norm $||ag||_{\mathcal{M}(a)} := ||g||_2$.

Proposition

If $b \in \mathbf{b}(H^{\infty})$ is non-extreme then

- **1** $\mathcal{M}(a) \subset \mathcal{H}(b)$ contractively.
- $2 \mathcal{M}(a) = \mathcal{H}(b) \Leftrightarrow$

 $\inf_{z \in \mathbb{D}} (|a(z)| + |b(z)|) > 0$ and $T_{a/\overline{a}}$ is invertible

Recall that $T_{a/\overline{a}}$ is invertible $\Leftrightarrow |a|^2$ is a Muckenhoupt weight.

$$\mathcal{M}(a)$$

Let $\mathcal{M}(a) := T_a H^2 = aH^2$ endwed with the norm $||ag||_{\mathcal{M}(a)} := ||g||_2$.

Proposition

If $b \in \mathbf{b}(H^{\infty})$ is non-extreme then

1 $\mathcal{M}(a) \subset \mathcal{H}(b)$ contractively.

 $\inf_{z\in\mathbb{D}}(|a(z)|+|b(z)|)>0$ and $T_{a/\overline{a}}$ is invertible

Recall that $T_{a/\overline{a}}$ is invertible $\Leftrightarrow |a|^2$ is a Muckenhoupt weight.

$$\mathcal{M}(a)$$

Let
$$\mathcal{M}(a) := T_a H^2 = aH^2$$
 endwed with the norm $||ag||_{\mathcal{M}(a)} := ||g||_2$.

Proposition

If $b \in \mathbf{b}(H^{\infty})$ is non-extreme then

1 $\mathcal{M}(a) \subset \mathcal{H}(b)$ contractively.

$$\inf_{z\in\mathbb{D}}(|a(z)|+|b(z)|)>0\quad\text{and}\quad T_{a/\overline{a}}\text{ is invertible}$$

17 / 39

Recall that $T_{a/\overline{a}}$ is invertible $\Leftrightarrow |a|^2$ is a Muckenhoupt weight.

$$\mathcal{M}(a)$$

Let
$$\mathcal{M}(a) := T_a H^2 = aH^2$$
 endwed with the norm $||ag||_{\mathcal{M}(a)} := ||g||_2$.

Proposition

If $b \in \mathbf{b}(H^{\infty})$ is non-extreme then

- \bullet $\mathcal{M}(a) \subset \mathcal{H}(b)$ contractively.
- $2 \mathcal{M}(a) = \mathcal{H}(b) \Leftrightarrow$

$$\inf_{z \in \mathbb{D}} (|a(z)| + |b(z)|) > 0$$
 and $T_{a/\overline{a}}$ is invertible

Recall that $T_{a/\bar{a}}$ is invertible $\Leftrightarrow |a|^2$ is a Muckenhoupt weight.

(Direct) Carleson embeddings for $\mathcal{H}(b)$

Proposition (BFGHR (2013))

Suppose $b \in \mathbf{b}(H^{\infty})$ is non-extreme and $\mu \in M_{+}(\mathbb{D}^{-})$. If

$$||f||_{\mu} \lesssim ||f||_{b}, \quad f \in \mathcal{H}(b) \cap \mathcal{C}(\mathbb{D}^{-}),$$

then $d\nu = |a|^2 d\mu$ is a Carleson measure for H^2 .

Proof.

$$||k_{\lambda}||_{2} = ||ak_{\lambda}||_{\mathscr{M}(a)} \ge ||ak_{\lambda}||_{b} \gtrsim ||ak_{\lambda}||_{\mu} = ||k_{\lambda}||_{\nu}$$

Proposition (BFGHR (2013))

Suppose $b \in \mathbf{b}(H^{\infty})$ is non-extreme and $\mu \in M_{+}(\mathbb{D}^{-})$. If

$$||f||_{\mu} \lesssim ||f||_{b}, \quad f \in \mathcal{H}(b) \cap \mathcal{C}(\mathbb{D}^{-}),$$

then $d\nu = |a|^2 d\mu$ is a Carleson measure for H^2 .

Proof.

$$||k_{\lambda}||_{2} = ||ak_{\lambda}||_{\mathscr{M}(a)} \ge ||ak_{\lambda}||_{b} \gtrsim ||ak_{\lambda}||_{\mu} = ||k_{\lambda}||_{\nu}.$$

Proposition (BFGHR (2013))

Suppose $b \in \mathbf{b}(H^{\infty})$ is non-extreme and $\mu \in M_{+}(\mathbb{D}^{-})$. If

$$||f||_{\mu} \lesssim ||f||_{b}, \quad f \in \mathcal{H}(b) \cap \mathcal{C}(\mathbb{D}^{-}),$$

then $d\nu = |a|^2 d\mu$ is a Carleson measure for H^2 .

Proof.

$$||k_{\lambda}||_{2} = ||ak_{\lambda}||_{\mathscr{M}(a)} \ge ||ak_{\lambda}||_{b} \gtrsim ||ak_{\lambda}||_{\mu} = ||k_{\lambda}||_{\nu}.$$

Theorem (BFGHR (2013))

Suppose $b \in \mathbf{b}(H^{\infty})$ is rational and non-extreme and $\mu \in M_{+}(\mathbb{D}^{-})$. Then TFAE:

Proof.

- Polynomials are contained (and dense) in $\mathcal{H}(b)$
- $\mathcal{M}(a)$ is closed in $\mathcal{H}(b)$ with finite co-dimension;
- Aleksandrov-Clark measures;
- $\mathcal{H}(b) = \mathcal{M}(a) + \mathcal{P}_{N-1}$, $N := \dim(\mathcal{H}(b)/\mathcal{M}(a))$

Theorem (BFGHR (2013))

Suppose $b \in \mathbf{b}(H^{\infty})$ is rational and non-extreme and $\mu \in M_{+}(\mathbb{D}^{-})$. Then TFAE:

- ① μ is a Carleson measure for $\mathcal{H}(b)$;

Proof.

- Polynomials are contained (and dense) in $\mathcal{H}(b)$
- $\mathcal{M}(a)$ is closed in $\mathcal{H}(b)$ with finite co-dimension;
- Aleksandrov-Clark measures;
- $\bullet \ \mathcal{H}(b) = \mathcal{M}(a) \dotplus \mathcal{P}_{N-1}, \quad N := \dim(\mathcal{H}(b)/\mathcal{M}(a))$

Theorem (BFGHR (2013))

Suppose $b \in \mathbf{b}(H^{\infty})$ is rational and non-extreme and $\mu \in M_{+}(\mathbb{D}^{-})$. Then TFAE:

- \bullet μ is a Carleson measure for $\mathcal{H}(b)$;

Proof.

- Polynomials are contained (and dense) in $\mathcal{H}(b)$
- $\mathcal{M}(a)$ is closed in $\mathcal{H}(b)$ with finite co-dimension;
- Aleksandrov-Clark measures;
- $\mathcal{H}(b) = \mathcal{M}(a) + \mathcal{P}_{N-1}$, $N := \dim(\mathcal{H}(b)/\mathcal{M}(a))$

Theorem (BFGHR (2013))

Suppose $b \in \mathbf{b}(H^{\infty})$ is rational and non-extreme and $\mu \in M_{+}(\mathbb{D}^{-})$. Then TFAE:

- **1** μ is a Carleson measure for $\mathcal{H}(b)$;
- \bullet $d\nu := |a|^2 d\mu$ is a Carleson measure for H^2 ,

Proof.

- Polynomials are contained (and dense) in $\mathcal{H}(b)$
- $\mathcal{M}(a)$ is closed in $\mathcal{H}(b)$ with finite co-dimension;
- Aleksandrov-Clark measures;
- $\mathcal{H}(b) = \mathcal{M}(a) + \mathcal{P}_{N-1}$, $N := \dim(\mathcal{H}(b)/\mathcal{M}(a))$

Theorem (BFGHR (2013))

Suppose $b \in \mathbf{b}(H^{\infty})$ is rational and non-extreme and $\mu \in M_{+}(\mathbb{D}^{-})$. Then TFAE:

- **1** μ is a Carleson measure for $\mathcal{H}(b)$;
- \bullet $d\nu := |a|^2 d\mu$ is a Carleson measure for H^2 ,

Proof.

- Polynomials are contained (and dense) in $\mathcal{H}(b)$
- $\mathcal{M}(a)$ is closed in $\mathcal{H}(b)$ with finite co-dimension;
- Aleksandrov-Clark measures;
- $\mathcal{H}(b) = \mathcal{M}(a) + \mathcal{P}_{N-1}$, $N := \dim(\mathcal{H}(b)/\mathcal{M}(a))$

Theorem (BFGHR (2013))

Suppose $b \in \mathbf{b}(H^{\infty})$ is rational and non-extreme and $\mu \in M_{+}(\mathbb{D}^{-})$. Then TFAE:

- **1** μ is a Carleson measure for $\mathcal{H}(b)$;
- \bullet $d\nu := |a|^2 d\mu$ is a Carleson measure for H^2 ,

Proof.

- Polynomials are contained (and dense) in $\mathcal{H}(b)$
- $\mathcal{M}(a)$ is closed in $\mathcal{H}(b)$ with finite co-dimension;
- Aleksandrov-Clark measures;
- $\mathcal{H}(b) = \mathcal{M}(a) + \mathcal{P}_{N-1}$, $N := \dim(\mathcal{H}(b)/\mathcal{M}(a))$

Theorem (BFGHR (2013))

Suppose $b \in \mathbf{b}(H^{\infty})$ is rational and non-extreme and $\mu \in M_{+}(\mathbb{D}^{-})$. Then TFAE:

- **1** μ is a Carleson measure for $\mathcal{H}(b)$;
- \bullet $d\nu := |a|^2 d\mu$ is a Carleson measure for H^2 ,

Proof.

- Polynomials are contained (and dense) in $\mathcal{H}(b)$
- $\mathcal{M}(a)$ is closed in $\mathcal{H}(b)$ with finite co-dimension;
- Aleksandrov-Clark measures;
- $\mathcal{H}(b) = \mathcal{M}(a) + \mathcal{P}_{N-1}$, $N := \dim(\mathcal{H}(b)/\mathcal{M}(a))$

Theorem (BFGHR (2013))

Suppose $b \in \mathbf{b}(H^{\infty})$ is rational and non-extreme and $\mu \in M_{+}(\mathbb{D}^{-})$. Then TFAE:

- **1** μ is a Carleson measure for $\mathcal{H}(b)$;
- \bullet $d\nu := |a|^2 d\mu$ is a Carleson measure for H^2 ,

Proof.

- Polynomials are contained (and dense) in $\mathcal{H}(b)$
- $\mathcal{M}(a)$ is closed in $\mathcal{H}(b)$ with finite co-dimension;
- Aleksandrov-Clark measures;
- $\bullet \ \mathcal{H}(b) = \mathcal{M}(a) \dotplus \mathcal{P}_{N-1}, \quad N := \dim(\mathcal{H}(b)/\mathcal{M}(a))$

Theorem (BFGHR (2013))

Suppose $b \in \mathbf{b}(H^{\infty})$ is rational and non-extreme and $\mu \in M_{+}(\mathbb{D}^{-})$. Then TFAE:

- **1** μ is a Carleson measure for $\mathcal{H}(b)$;
- \bullet $d\nu := |a|^2 d\mu$ is a Carleson measure for H^2 ,

Proof.

- ullet Polynomials are contained (and dense) in $\mathcal{H}(b)$
- $\mathcal{M}(a)$ is closed in $\mathcal{H}(b)$ with finite co-dimension;
- Aleksandrov-Clark measures;
- $\bullet \ \mathcal{H}(b) = \mathcal{M}(a) \dotplus \mathcal{P}_{N-1}, \quad N := \dim(\mathcal{H}(b)/\mathcal{M}(a))$

Theorem (BFGHR (2013))

Suppose $b \in \mathbf{b}(H^{\infty})$ is rational and non-extreme and $\mu \in M_{+}(\mathbb{D}^{-})$. Then TFAE:

- **1** μ is a Carleson measure for $\mathcal{H}(b)$;
- \bullet $d\nu := |a|^2 d\mu$ is a Carleson measure for H^2 ,

Proof.

- Polynomials are contained (and dense) in $\mathcal{H}(b)$
- $\mathcal{M}(a)$ is closed in $\mathcal{H}(b)$ with finite co-dimension;
- Aleksandrov-Clark measures;
- $\mathcal{H}(b) = \mathcal{M}(a) + \mathcal{P}_{N-1}$, $N := \dim(\mathcal{H}(b)/\mathcal{M}(a))$

Theorem (BFGHR (2013))

Suppose $b \in \mathbf{b}(H^{\infty})$ and non-extreme such that $\mathcal{M}(a) = \mathcal{H}(b)$ and $\mu \in M_{+}(\mathbb{D}^{-})$. TFAE:

- ① μ is a Carleson measure for $\mathcal{H}(b)$;
- ② $d\nu := |a|^2 d\mu$ is a Carleson measure for H^2 ,

Theorem (BFGHR (2013))

Suppose $b \in \mathbf{b}(H^{\infty})$ and non-extreme such that $\mathcal{M}(a) = \mathcal{H}(b)$ and $\mu \in M_{+}(\mathbb{D}^{-})$. TFAE:

- **1** μ is a Carleson measure for $\mathcal{H}(b)$;
- 2 $d\nu := |a|^2 d\mu$ is a Carleson measure for H^2 ,

Theorem (BFGHR (2013))

Suppose $b \in \mathbf{b}(H^{\infty})$ and non-extreme such that $\mathcal{M}(a) = \mathcal{H}(b)$ and $\mu \in M_{+}(\mathbb{D}^{-})$. TFAE:

Gargnano 2013

- μ is a Carleson measure for $\mathcal{H}(b)$;
- 2 $d\nu := |a|^2 d\mu$ is a Carleson measure for H^2 ,

Theorem (BFGHR (2013))

Suppose $b \in \mathbf{b}(H^{\infty})$ and non-extreme such that $\mathcal{M}(a) = \mathcal{H}(b)$ and $\mu \in M_{+}(\mathbb{D}^{-})$. TFAE:

- **1** μ is a Carleson measure for $\mathcal{H}(b)$;
- $\mathbf{2} \ d\nu := |a|^2 d\mu \text{ is a Carleson measure for } H^2,$

For $b \in \mathbf{b}(H^{\infty})$ and non-extreme and $\varepsilon > 0$, let

$$\Omega(b,\varepsilon) := \{ z \in \mathbb{D} : |b(z)| < \varepsilon \}.$$

Let

$$\sigma(b) = \{ \zeta \in \mathbb{T} : \underline{\lim}_{z \to \zeta} |b(z)| = 0 \}.$$

Theorem (Fricain-Baranov (2010))

If $\mu \in M_+(\mathbb{D}^-)$ such that

$$\sup \left\{ \frac{\mu(S(I))}{m(I)} : I \subset \mathbb{T} : S(I) \cap (\Omega(b, \varepsilon) \cup \sigma(b)) \neq \emptyset \right\} < +\infty$$

For $b \in \mathbf{b}(H^{\infty})$ and non-extreme and $\varepsilon > 0$, let

$$\Omega(b,\varepsilon):=\{z\in\mathbb{D}:|b(z)|<\varepsilon\}.$$

Let

$$\sigma(b) = \{ \zeta \in \mathbb{T} : \underline{\lim}_{z \to \zeta} |b(z)| = 0 \}.$$

Theorem (Fricain-Baranov (2010))

If $\mu \in M_+(\mathbb{D}^-)$ such that

$$\sup \left\{ \frac{\mu(S(I))}{m(I)} : I \subset \mathbb{T} : S(I) \cap (\Omega(b, \varepsilon) \cup \sigma(b)) \neq \emptyset \right\} < +\infty$$

For $b \in \mathbf{b}(H^{\infty})$ and non-extreme and $\varepsilon > 0$, let

$$\Omega(b,\varepsilon):=\{z\in\mathbb{D}:|b(z)|<\varepsilon\}.$$

Let

$$\sigma(b) = \{ \zeta \in \mathbb{T} : \underline{\lim}_{z \to \zeta} |b(z)| = 0 \}.$$

Theorem (Fricain-Baranov (2010))

If $\mu \in M_+(\mathbb{D}^-)$ such that

$$\sup \left\{ \frac{\mu(S(I))}{m(I)} : I \subset \mathbb{T} : S(I) \cap (\Omega(b, \varepsilon) \cup \sigma(b)) \neq \emptyset \right\} < +\infty$$

For $b \in \mathbf{b}(H^{\infty})$ and non-extreme and $\varepsilon > 0$, let

$$\Omega(b,\varepsilon):=\{z\in\mathbb{D}:|b(z)|<\varepsilon\}.$$

Let

$$\sigma(b) = \{\zeta \in \mathbb{T} : \underline{\lim}_{z \to \zeta} |b(z)| = 0\}.$$

Theorem (Fricain-Baranov (2010))

If $\mu \in M_+(\mathbb{D}^-)$ such that

$$\sup \left\{ \frac{\mu(S(I))}{m(I)} : I \subset \mathbb{T} : S(I) \cap (\Omega(b, \varepsilon) \cup \sigma(b)) \neq \emptyset \right\} < +\infty$$

For $b \in \mathbf{b}(H^{\infty})$ and non-extreme and $\varepsilon > 0$, let

$$\Omega(b,\varepsilon):=\{z\in\mathbb{D}:|b(z)|<\varepsilon\}.$$

Let

$$\sigma(b) = \{\zeta \in \mathbb{T} : \underline{\lim}_{z \to \zeta} |b(z)| = 0\}.$$

Theorem (Fricain-Baranov (2010))

If $\mu \in M_+(\mathbb{D}^-)$ such that

$$\sup \left\{ \frac{\mu(S(I))}{m(I)} : I \subset \mathbb{T} : S(I) \cap (\Omega(b, \varepsilon) \cup \sigma(b)) \neq \emptyset \right\} < +\infty$$

Reminder: $b \in \mathbf{b}(H^{\infty})$ non-extreme $\Rightarrow \mathcal{H}(b) \cap \mathcal{C}(\mathbb{D}^{-})$ dense in $\mathcal{H}(b)$.

W. Ross et al () $\mathcal{H}(b)$ spaces Gargnano 2013 25 / 39

Reminder: $b \in \mathbf{b}(H^{\infty})$ non-extreme $\Rightarrow \mathscr{H}(b) \cap \mathcal{C}(\mathbb{D}^{-})$ dense in $\mathscr{H}(b)$.

Proposition (BFGHR (2013))

Suppose $||k_{\lambda}||_{b} \lesssim ||k_{\lambda}||_{\mu}$ for all $\lambda \in \mathbb{D}$. Then $b/a \in H^{2}$

$$||k_{\lambda}||_{b}^{2} = ||k_{\lambda}||_{2}^{2} + ||T_{\overline{b/a}}k_{\lambda}||_{2}^{2}$$

$$= ||k_{\lambda}||_{2}^{2} + |\frac{b}{a}(\lambda)|^{2}||k_{\lambda}||_{2}^{2}$$

$$= \frac{1}{1 - |\lambda|^{2}} (1 + |\frac{b}{a}(\lambda)|^{2})$$

$$\leq C \int \frac{1}{|1 - \overline{\lambda}z|^{2}} d\mu(z)$$

$$\left|\frac{b}{a}(\lambda)\right|^{2} \leq C \int \frac{1 - |\lambda|^{2}}{|1 - \overline{\lambda}z|^{2}} d\mu(z)$$

Proposition (BFGHR (2013))

Suppose $||k_{\lambda}||_{b} \lesssim ||k_{\lambda}||_{\mu}$ for all $\lambda \in \mathbb{D}$. Then $b/a \in H^{2}$.

$$||k_{\lambda}||_{b}^{2} = ||k_{\lambda}||_{2}^{2} + ||T_{\overline{b/a}}k_{\lambda}||_{2}^{2}$$

$$= ||k_{\lambda}||_{2}^{2} + |\frac{b}{a}(\lambda)|^{2}||k_{\lambda}||_{2}^{2}$$

$$= \frac{1}{1 - |\lambda|^{2}} (1 + |\frac{b}{a}(\lambda)|^{2})$$

$$\leq C \int \frac{1}{|1 - \overline{\lambda}z|^{2}} d\mu(z)$$

$$\left|\frac{b}{a}(\lambda)\right|^{2} \leq C \int \frac{1 - |\lambda|^{2}}{|1 - \overline{\lambda}z|^{2}} d\mu(z)$$

Proposition (BFGHR (2013))

Suppose $||k_{\lambda}||_b \lesssim ||k_{\lambda}||_{\mu}$ for all $\lambda \in \mathbb{D}$. Then $b/a \in H^2$.

$$\begin{aligned} \|k_{\lambda}\|_{b}^{2} &= \|k_{\lambda}\|_{2}^{2} + \|T_{\overline{b/a}}k_{\lambda}\|_{2}^{2} \\ &= \|k_{\lambda}\|_{2}^{2} + \left|\frac{b}{a}(\lambda)\right|^{2} \|k_{\lambda}\|_{2}^{2} \\ &= \frac{1}{1 - |\lambda|^{2}} (1 + \left|\frac{b}{a}(\lambda)\right|^{2}) \\ &\leq C \int \frac{1}{|1 - \overline{\lambda}z|^{2}} d\mu(z) \\ \left|\frac{b}{a}(\lambda)\right|^{2} &\leq C \int \frac{1 - |\lambda|^{2}}{|1 - \overline{\lambda}z|^{2}} d\mu(z) \end{aligned}$$

More about $b/a \in H^2$ and its consequences

Recall that $||k_{\lambda}||_b \lesssim ||k_{\lambda}||_{\mu}, \lambda \in \mathbb{D} \Rightarrow b/a \in H^2$.

Proposition (Sarason)

If $b \in \mathbf{b}(H^{\infty})$ and non-extreme then TFAE:

- **1** $b/a \in H^2$;

This means that if $||f||_b \lesssim ||f||_\mu$ for all $f \in \mathcal{H}(b)$, then

$$\int |f|^2 d\mu$$

must be defined for all $f \in H^{\infty}$. Important consequence

Proposition (Sarason)

If $b \in \mathbf{b}(H^{\infty})$ and non-extreme then TFAE:

- **1** $b/a \in H^2$;

This means that if $||f||_b \lesssim ||f||_\mu$ for all $f \in \mathcal{H}(b)$, then

$$\int |f|^2 d\mu$$

must be defined for all $f \in H^{\infty}$. Important consequence

Proposition (Sarason)

If $b \in \mathbf{b}(H^{\infty})$ and non-extreme then TFAE:

- **1** $b/a \in H^2$;
- $2 H^{\infty} \subset \mathcal{H}(b).$

This means that if $||f||_b \lesssim ||f||_{\mu}$ for all $f \in \mathcal{H}(b)$, then

$$\int |f|^2 d\mu$$

must be defined for all $f \in H^{\infty}$. Important consequence

Proposition (Sarason)

If $b \in \mathbf{b}(H^{\infty})$ and non-extreme then TFAE:

- **1** $b/a \in H^2$;
- $\mathbf{2} \ H^{\infty} \subset \mathcal{H}(b).$

This means that if $||f||_b \lesssim ||f||_{\mu}$ for all $f \in \mathcal{H}(b)$, then

$$\int |f|^2 d\mu$$

must be defined for all $f \in H^{\infty}$. Important consequence

Proposition (Sarason)

If $b \in \mathbf{b}(H^{\infty})$ and non-extreme then TFAE:

- **1** $b/a \in H^2$;
- \bullet $H^{\infty} \subset \mathcal{H}(b)$.

This means that if $||f||_b \lesssim ||f||_{\mu}$ for all $f \in \mathcal{H}(b)$, then

$$\int |f|^2 d\mu$$

must be defined for all $f \in H^{\infty}$. Important consequence

Proposition (Sarason)

If $b \in \mathbf{b}(H^{\infty})$ and non-extreme then TFAE:

- **1** $b/a \in H^2$;
- $H^{\infty} \subset \mathscr{H}(b).$

This means that if $||f||_b \lesssim ||f||_{\mu}$ for all $f \in \mathcal{H}(b)$, then

$$\int |f|^2 d\mu$$

must be defined for all $f \in H^{\infty}$. Important consequence

Proposition (Sarason)

If $b \in \mathbf{b}(H^{\infty})$ and non-extreme then TFAE:

- **1** $b/a \in H^2$;
- $H^{\infty} \subset \mathscr{H}(b).$

This means that if $||f||_b \lesssim ||f||_{\mu}$ for all $f \in \mathcal{H}(b)$, then

$$\int |f|^2 d\mu$$

must be defined for all $f \in H^{\infty}$.

Important consequence

Proposition (Sarason)

If $b \in \mathbf{b}(H^{\infty})$ and non-extreme then TFAE:

- **1** $b/a \in H^2$;
- $H^{\infty} \subset \mathscr{H}(b).$

This means that if $||f||_b \lesssim ||f||_{\mu}$ for all $f \in \mathcal{H}(b)$, then

$$\int |f|^2 d\mu$$

must be defined for all $f \in H^{\infty}$. Important consequence

More about $b/a \in H^2$ and its consequences

Recall that $||k_{\lambda}||_{b} \lesssim ||k_{\lambda}||_{\mu}, \lambda \in \mathbb{D} \Rightarrow b/a \in H^{2}$.

Proposition (Sarason)

If $b \in \mathbf{b}(H^{\infty})$ and non-extreme then TFAE:

- **1** $b/a \in H^2$;
- \bullet $H^{\infty} \subset \mathcal{H}(b)$.

This means that if $||f||_b \lesssim ||f||_{\mu}$ for all $f \in \mathcal{H}(b)$, then

$$\int |f|^2 d\mu$$

must be defined for all $f \in H^{\infty}$.

Important consequence

Theorem (BFGHR (2013))

Let $b \in \mathbf{b}(H^{\infty})$ be non-extreme and $\mu \in M_{+}(\mathbb{D}^{-})$ such that $\mu|_{\mathbb{T}} \ll m$ Let $h = d\mu|_{\mathbb{T}}/dm$. TFAE:

- $\|k_{\lambda}^{b}\|_{b} \lesssim \|k_{\lambda}^{b}\|_{\mu} \text{ holds for every } \lambda \in \mathbb{D}.$

$$\inf_{I} \frac{\nu\left(S(I)\right)}{m(I)} > 0;$$

Theorem (BFGHR (2013))

Let $b \in \mathbf{b}(H^{\infty})$ be non-extreme and $\mu \in M_{+}(\mathbb{D}^{-})$ such that $\mu|_{\mathbb{T}} \ll m$. Let $h = d\mu|_{\mathbb{T}}/dm$. TFAE:

- $d\nu := |a|^2 d\mu$, satisfies

$$\inf_{I} \frac{\nu\left(S(I)\right)}{m(I)} > 0$$

Theorem (BFGHR (2013))

Let $b \in \mathbf{b}(H^{\infty})$ be non-extreme and $\mu \in M_{+}(\mathbb{D}^{-})$ such that $\mu|_{\mathbb{T}} \ll m$. Let $h = d\mu|_{\mathbb{T}}/dm$. TFAE:

- $\|k_{\lambda}^{b}\|_{b} \lesssim \|k_{\lambda}^{b}\|_{\mu} \text{ holds for every } \lambda \in \mathbb{D}.$
- $\mathbf{3} \ d\nu := |a|^2 d\mu, \ satisfies$

$$\inf_{I} \frac{\nu\left(S(I)\right)}{m(I)} > 0$$

Theorem (BFGHR (2013))

Let $b \in \mathbf{b}(H^{\infty})$ be non-extreme and $\mu \in M_{+}(\mathbb{D}^{-})$ such that $\mu|_{\mathbb{T}} \ll m$. Let $h = d\mu|_{\mathbb{T}}/dm$. TFAE:

- $d\nu := |a|^2 d\mu$, satisfies

$$\inf_{I} \frac{\nu\left(S(I)\right)}{m(I)} > 0;$$

Theorem (BFGHR (2013))

Let $b \in \mathbf{b}(H^{\infty})$ be non-extreme and $\mu \in M_{+}(\mathbb{D}^{-})$ such that $\mu|_{\mathbb{T}} \ll m$. Let $h = d\mu|_{\mathbb{T}}/dm$. TFAE:

- \bullet $d\nu := |a|^2 d\mu$, satisfies

$$\inf_{I} \frac{\nu\left(S(I)\right)}{m(I)} > 0;$$

Theorem (BFGHR (2013))

Let $b \in \mathbf{b}(H^{\infty})$ be non-extreme and $\mu \in M_{+}(\mathbb{D}^{-})$ such that $\mu|_{\mathbb{T}} \ll m$. Let $h = d\mu|_{\mathbb{T}}/dm$. TFAE:

- \bullet $d\nu := |a|^2 d\mu$, satisfies

$$\inf_{I} \frac{\nu\left(S(I)\right)}{m(I)} > 0;$$

 $\bullet \inf_{\zeta \in \mathbb{T}} |a(\zeta)|^2 h(\zeta) > 0.$

- $\|f\|_b \simeq \|f\|_{\mu}, \quad f \in \mathcal{H}(b);$
- - \bullet inf{ $|a(z)| + |b(z)| : z \in \mathbb{D}$ } > 0;

 - $\nu(S(I)) \simeq m(I) \text{ for all open arcs } I \subset \mathbb{T}$

29 / 39

Question

For $\mu \in M_+(\mathbb{D}^-)$ when do we have $||f||_b \approx ||f||_\mu$, $f \in \mathcal{H}(b)$?

Theorem

- - The following conditions hold:

 - \bullet $\nu(S(I)) \asymp m(I)$ for all open arcs $I \subset \mathbb{T}$

Question

For $\mu \in M_+(\mathbb{D}^-)$ when do we have $||f||_b \asymp ||f||_\mu$, $f \in \mathcal{H}(b)$?

Theorem

- 2 The following conditions hold.

 - $|a|^2$ is a Muckenhaupt weight;
 - \bullet $\nu(S(I)) \times m(I)$ for all open arcs $I \subset \mathbb{T}$

Question

For $\mu \in M_+(\mathbb{D}^-)$ when do we have $||f||_b \approx ||f||_\mu$, $f \in \mathcal{H}(b)$?

Theorem

- $\bullet \|f\|_b \asymp \|f\|_{\mu}, \quad f \in \mathscr{H}(b);$
- 2 The following conditions hold.

 - \bullet $\nu(S(I)) \asymp m(I)$ for all open arcs $I \subset \mathbb{T}$

Question

For $\mu \in M_+(\mathbb{D}^-)$ when do we have $||f||_b \approx ||f||_\mu$, $f \in \mathcal{H}(b)$?

Theorem

- $\bullet \|f\|_b \asymp \|f\|_{\mu}, \quad f \in \mathcal{H}(b);$
- 2 The following conditions hold:
 - \bullet inf{ $|a(z)| + |b(z)| : z \in \mathbb{D}$ } > 0;
 - $|a|^2$ is a Muckenhaupt weight;

Question

For $\mu \in M_+(\mathbb{D}^-)$ when do we have $||f||_b \asymp ||f||_\mu$, $f \in \mathcal{H}(b)$?

Theorem

- $\bullet \|f\|_b \asymp \|f\|_{\mu}, \quad f \in \mathcal{H}(b);$
- 2 The following conditions hold:

 - \bullet $\nu(S(I)) \times m(I)$ for all open arcs $I \subset \mathbb{T}$

Question

For $\mu \in M_+(\mathbb{D}^-)$ when do we have $||f||_b \approx ||f||_\mu$, $f \in \mathcal{H}(b)$?

Theorem

- $\bullet \|f\|_b \asymp \|f\|_{\mu}, \quad f \in \mathcal{H}(b);$
- **2** The following conditions hold:
 - $\inf\{|a(z)| + |b(z)| : z \in \mathbb{D}\} > 0;$
 - $|a|^2$ is a Muckenhaupt weight;
 - \bullet $\nu(S(I)) \asymp m(I)$ for all open arcs $I \subset \mathbb{T}$

Question

For $\mu \in M_+(\mathbb{D}^-)$ when do we have $||f||_b \approx ||f||_\mu$, $f \in \mathcal{H}(b)$?

Theorem

- $\bullet \|f\|_b \asymp \|f\|_{\mu}, \quad f \in \mathcal{H}(b);$
- 2 The following conditions hold:

 - $|a|^2$ is a Muckenhaupt weight;
 - \bullet $\nu(S(I)) \asymp m(I)$ for all open arcs $I \subset \mathbb{T}$

Example

Let

$$a(z) = c_{\alpha}(1-z)^{\alpha},$$

where $\alpha \in (0, 1/2)$ and b be the Pythagorean mate for a. Let

$$d\mu = \frac{1}{|a|^2} dm.$$

30 / 39

Question

For $\mu \in M_+(\mathbb{D}^-)$, when do we have $||f||_b = ||f||_\mu$ for all $f \in \mathcal{H}(b)$?

Theorem

For $b \in \mathbf{b}(H^{\infty})$ non-extreme (and non-constant), there are no isometric measures for $\mathcal{H}(b)$.

Question

For $\mu \in M_+(\mathbb{D}^-)$, when do we have $||f||_b = ||f||_\mu$ for all $f \in \mathcal{H}(b)$?

Theorem

For $b \in \mathbf{b}(H^{\infty})$ non-extreme (and non-constant), there are no isometric measures for $\mathcal{H}(b)$.

33 / 39

Question

For $\mu \in M_+(\mathbb{D}^-)$, when do we have $||f||_{b} = ||f||_{\mu}$ for all $f \in \mathcal{H}(b)$?

Theorem

For $b \in \mathbf{b}(H^{\infty})$ non-extreme (and non-constant), there are no isometric measures for $\mathcal{H}(b)$.

Proposition

With $b \in \mathbf{b}(H^{\infty})$ non-extreme (and non-constant) and $b/a \in H^2$ we have

$$||z^n||_b^2 = 1 + \sum_{j=0}^n |\widehat{b/a}(j)|^2.$$

$$||z^n||_b^2 = ||z^n||_2^2 + ||T_{\overline{b/a}}z^n||_2^2$$

Isometric embeddings of $\mathcal{H}(b)$

Proposition

With $b \in \mathbf{b}(H^{\infty})$ non-extreme (and non-constant) and $b/a \in H^2$ we have

$$||z^n||_b^2 = 1 + \sum_{j=0}^n |\widehat{b/a}(j)|^2.$$

Proof.

$$|z^n|_b^2 = ||z^n||_2^2 + ||T_{\overline{b/a}}z^n||_2^2$$

Isometric embeddings of $\mathcal{H}(b)$

Proposition

With $b \in \mathbf{b}(H^{\infty})$ non-extreme (and non-constant) and $b/a \in H^2$ we have

$$||z^n||_b^2 = 1 + \sum_{j=0}^n |\widehat{b/a}(j)|^2.$$

Proof.

$$||z^n||_b^2 = ||z^n||_2^2 + ||T_{\overline{b/a}}z^n||_2^2$$

Proof there are no isometric measures for $\mathcal{H}(b)$

Suppose $||z^n||_{\mu} = ||z^n||_b$ for all n. Then

$$||z^n||_{\mu}^2 = \mu(\mathbb{T}) + \int_{\mathbb{D}} |z|^{2n} d\mu(z) = ||z^n||_b^2 = 1 + \sum_{j=0}^n |\widehat{b/a}(j)|^2$$

$$\mu(\mathbb{T}) = 1 + \sum_{j=0}^{\infty} |\widehat{b/a}(j)|^2.$$

$$\Rightarrow \sum_{j=n+1}^{\infty} |\widehat{b/a}(j)|^2 = 0$$

$$\Rightarrow \sum_{j=1}^{\infty} |\widehat{b/a}(j)|^2 = 0$$

$$\Rightarrow b/a = k$$

$$= |a|^2 + |b|^2 = |a|^2 (1 + |k|^2)$$

Proof there are no isometric measures for $\mathcal{H}(b)$

Suppose $||z^n||_{\mu} = ||z^n||_b$ for all n. Then

$$||z^n||_{\mu}^2 = \mu(\mathbb{T}) + \int_{\mathbb{D}} |z|^{2n} d\mu(z) = ||z^n||_b^2 = 1 + \sum_{j=0}^n |\widehat{b/a}(j)|^2$$

$$\mu(\mathbb{T}) = 1 + \sum_{j=0}^{\infty} |\widehat{b/a}(j)|^2.$$

$$\Rightarrow \sum_{j=n+1}^{\infty} |\widehat{b/a}(j)|^2 = 0$$

$$\Rightarrow \sum_{j=1}^{\infty} |\widehat{b/a}(j)|^2 = 0$$

$$\Rightarrow b/a = k$$

$$= |a|^2 + |b|^2 = |a|^2 (1 + |b|^2)$$

$$||z^n||_{\mu}^2 = \mu(\mathbb{T}) + \int_{\mathbb{D}} |z|^{2n} d\mu(z) = ||z^n||_b^2 = 1 + \sum_{j=0}^n |\widehat{b/a}(j)|^2$$

$$\mu(\mathbb{T}) = 1 + \sum_{j=0}^{\infty} |\widehat{b/a}(j)|^2.$$

$$\Rightarrow \sum_{j=n+1}^{\infty} |\widehat{b/a}(j)|^2 = 0$$

$$\Rightarrow \sum_{j=1}^{\infty} |\widehat{b/a}(j)|^2 = 0$$

$$\Rightarrow b/a = k$$

$$= |a|^2 + |b|^2 = |a|^2(1 + |b|^2)$$

$$||z^n||_{\mu}^2 = \mu(\mathbb{T}) + \int_{\mathbb{D}} |z|^{2n} d\mu(z) = ||z^n||_b^2 = 1 + \sum_{j=0}^n |\widehat{b/a}(j)|^2$$

$$\mu(\mathbb{T}) = 1 + \sum_{j=0}^{\infty} |\widehat{b/a}(j)|^2.$$

$$\Rightarrow \sum_{j=n+1}^{\infty} |\widehat{b/a}(j)|^2 = 0$$

$$\Rightarrow \sum_{j=1}^{\infty} |\widehat{b/a}(j)|^2 = 0$$

$$\Rightarrow b/a = k$$

$$= |a|^2 + |b|^2 = |a|^2(1 + |k|^2)$$

$$||z^n||_{\mu}^2 = \mu(\mathbb{T}) + \int_{\mathbb{D}} |z|^{2n} d\mu(z) = ||z^n||_b^2 = 1 + \sum_{j=0}^n |\widehat{b/a}(j)|^2$$

$$\mu(\mathbb{T}) = 1 + \sum_{j=0}^{\infty} |\widehat{b/a}(j)|^2.$$

$$\Rightarrow \sum_{j=n+1}^{\infty} |\widehat{b/a}(j)|^2 = 0$$

$$\Rightarrow \sum_{j=1}^{\infty} |\widehat{b/a}(j)|^2 = 0$$

$$\Rightarrow b/a = k$$

$$||z^n||_{\mu}^2 = \mu(\mathbb{T}) + \int_{\mathbb{D}} |z|^{2n} d\mu(z) = ||z^n||_b^2 = 1 + \sum_{j=0}^n |\widehat{b/a}(j)|^2$$

$$\mu(\mathbb{T}) = 1 + \sum_{j=0}^{\infty} |\widehat{b/a}(j)|^2.$$

$$\Rightarrow \sum_{j=n+1}^{\infty} |\widehat{b/a}(j)|^2 = 0$$

$$\Rightarrow \sum_{j=1}^{\infty} |\widehat{b/a}(j)|^2 = 0$$

$$\Rightarrow b/a = k$$

$$= |a|^2 + |b|^2 = |a|^2 (1 + |b|^2)$$

$$||z^n||_{\mu}^2 = \mu(\mathbb{T}) + \int_{\mathbb{D}} |z|^{2n} d\mu(z) = ||z^n||_b^2 = 1 + \sum_{i=0}^n |\widehat{b/a}(j)|^2$$

$$\mu(\mathbb{T}) = 1 + \sum_{j=0}^{\infty} |\widehat{b/a}(j)|^2.$$

$$\Rightarrow \sum_{j=n+1}^{\infty} |\widehat{b/a}(j)|^2 = 0$$

$$\Rightarrow \sum_{j=1}^{\infty} |\widehat{b/a}(j)|^2 = 0$$

$$\Rightarrow b/a = k$$

$$1 = |a|^2 + |b|^2 = |a|^2(1 + |k|^2)$$

What happens when b is constant?

Proposition

If b is constant, then $\mathcal{H}(b) = H^2$ with the same norm and the only isometric measure on H^2 is m.

What happens when b is constant?

Proposition

If b is constant, then $\mathcal{H}(b) = H^2$ with the same norm and the only isometric measure on H^2 is m.

A BRIEF REMARK ON THE INNER CASE

A set $\Sigma \subset \mathbb{T}, m(\Sigma) < 1$, is dominating for $(\Theta H^2)^{\perp}$ if

$$\int_{\mathbb{T}} |f|^2 dm \lesssim \int_{\Sigma} |f|^2 dm, \quad f \in (\Theta H^2)^{\perp}$$

Equivalently, if $d\mu = \chi_{\Sigma} dm$, then $\|\cdot\|_{\mu} \asymp \|\cdot\|_2$ on $(\Theta H^2)^{\perp}$.

Theorem (BFGHR (2012))

Every model space $(\Theta H^2)^{\perp}$ admits a dominating set Σ

Proposition

- $d(\Sigma, \{\xi : |\Theta'(\xi)| = +\infty\}) = 0.$
- $d(\Sigma, \sigma(\Theta)) = 0$.

A set $\Sigma \subset \mathbb{T}$, $m(\Sigma) < 1$, is dominating for $(\Theta H^2)^{\perp}$ if

$$\int_{\mathbb{T}} |f|^2 dm \lesssim \int_{\Sigma} |f|^2 dm, \quad f \in (\Theta H^2)^{\perp}.$$

Equivalently, if $d\mu = \chi_{\Sigma} dm$, then $\|\cdot\|_{\mu} \times \|\cdot\|_{2}$ on $(\Theta H^{2})^{\perp}$.

Theorem (BFGHR (2012))

Every model space $(\Theta H^2)^{\perp}$ admits a dominating set Σ

Proposition

- $d(\Sigma, \{\xi : |\Theta'(\xi)| = +\infty\}) = 0.$
- $d(\Sigma, \sigma(\Theta)) = 0$.

A set $\Sigma \subset \mathbb{T}$, $m(\Sigma) < 1$, is dominating for $(\Theta H^2)^{\perp}$ if

$$\int_{\mathbb{T}} |f|^2 dm \lesssim \int_{\Sigma} |f|^2 dm, \quad f \in (\Theta H^2)^{\perp}.$$

Equivalently, if $d\mu = \chi_{\Sigma} dm$, then $\|\cdot\|_{\mu} \times \|\cdot\|_{2}$ on $(\Theta H^{2})^{\perp}$.

Theorem (BFGHR (2012))

Every model space $(\Theta H^2)^{\perp}$ admits a dominating set Σ .

Proposition

- $d(\Sigma, \{\xi : |\Theta'(\xi)| = +\infty\}) = 0.$
- $d(\Sigma, \sigma(\Theta)) = 0$.

A set $\Sigma \subset \mathbb{T}$, $m(\Sigma) < 1$, is dominating for $(\Theta H^2)^{\perp}$ if

$$\int_{\mathbb{T}} |f|^2 dm \lesssim \int_{\Sigma} |f|^2 dm, \quad f \in (\Theta H^2)^{\perp}.$$

Equivalently, if $d\mu = \chi_{\Sigma} dm$, then $\|\cdot\|_{\mu} \asymp \|\cdot\|_{2}$ on $(\Theta H^{2})^{\perp}$.

Theorem (BFGHR (2012))

Every model space $(\Theta H^2)^{\perp}$ admits a dominating set Σ .

Proposition

- $d(\Sigma, \{\xi : |\Theta'(\xi)| = +\infty\}) = 0.$
- $d(\Sigma, \sigma(\Theta)) = 0$.

A set $\Sigma \subset \mathbb{T}$, $m(\Sigma) < 1$, is dominating for $(\Theta H^2)^{\perp}$ if

$$\int_{\mathbb{T}} |f|^2 dm \lesssim \int_{\Sigma} |f|^2 dm, \quad f \in (\Theta H^2)^{\perp}.$$

Equivalently, if $d\mu = \chi_{\Sigma} dm$, then $\|\cdot\|_{\mu} \asymp \|\cdot\|_2$ on $(\Theta H^2)^{\perp}$.

Theorem (BFGHR (2012))

Every model space $(\Theta H^2)^{\perp}$ admits a dominating set Σ .

Proposition

- $\bullet \ d(\Sigma, \{\xi: |\Theta'(\xi)| = +\infty\}) = 0.$
- $d(\Sigma, \sigma(\Theta)) = 0$.

A set $\Sigma \subset \mathbb{T}$, $m(\Sigma) < 1$, is dominating for $(\Theta H^2)^{\perp}$ if

$$\int_{\mathbb{T}} |f|^2 dm \lesssim \int_{\Sigma} |f|^2 dm, \quad f \in (\Theta H^2)^{\perp}.$$

Equivalently, if $d\mu = \chi_{\Sigma} dm$, then $\|\cdot\|_{\mu} \asymp \|\cdot\|_{2}$ on $(\Theta H^{2})^{\perp}$.

Theorem (BFGHR (2012))

Every model space $(\Theta H^2)^{\perp}$ admits a dominating set Σ .

Proposition

- $d(\Sigma, \{\xi : |\Theta'(\xi)| = +\infty\}) = 0.$
- $d(\Sigma, \sigma(\Theta)) = 0$.

A set $\Sigma \subset \mathbb{T}$, $m(\Sigma) < 1$, is dominating for $(\Theta H^2)^{\perp}$ if

$$\int_{\mathbb{T}} |f|^2 dm \lesssim \int_{\Sigma} |f|^2 dm, \quad f \in (\Theta H^2)^{\perp}.$$

Equivalently, if $d\mu = \chi_{\Sigma} dm$, then $\|\cdot\|_{\mu} \asymp \|\cdot\|_{2}$ on $(\Theta H^{2})^{\perp}$.

Theorem (BFGHR (2012))

Every model space $(\Theta H^2)^{\perp}$ admits a dominating set Σ .

Proposition

- $d(\Sigma, \{\xi : |\Theta'(\xi)| = +\infty\}) = 0.$
- $d(\Sigma, \sigma(\Theta)) = 0$.

Theorem (BFGHR (2012))

Let Θ be an inner function, Σ be a dominating set for $(\Theta H^2)^{\perp}$, and $\mu \in M_+(\mathbb{D}^-)$ be such that $(\Theta H^2)^{\perp} \hookrightarrow L^2(\mu)$. Suppose that

$$\inf_{I} \frac{\mu(S(I))}{m(I)} > 0,$$

Theorem (BFGHR (2012))

Let Θ be an inner function, Σ be a dominating set for $(\Theta H^2)^{\perp}$, and $\mu \in M_+(\mathbb{D}^-)$ be such that $(\Theta H^2)^{\perp} \hookrightarrow L^2(\mu)$. Suppose that

$$\inf_{I} \frac{\mu(S(I))}{m(I)} > 0,$$

where the infimum is taken over all arcs $I \subset \mathbb{T}$ for which $I \cap \Sigma \neq \emptyset$, then $\|\cdot\|_{\mu} \times \|\cdot\|_{2}$ on $(\Theta H^{2})^{\perp}$.

W. Ross et al () $\mathscr{H}(b)$ spaces Gargnano 2013 39 / 39

Theorem (BFGHR (2012))

Let Θ be an inner function, Σ be a dominating set for $(\Theta H^2)^{\perp}$, and $\mu \in M_+(\mathbb{D}^-)$ be such that $(\Theta H^2)^{\perp} \hookrightarrow L^2(\mu)$. Suppose that

$$\inf_{I} \frac{\mu(S(I))}{m(I)} > 0,$$

Theorem (BFGHR (2012))

Let Θ be an inner function, Σ be a dominating set for $(\Theta H^2)^{\perp}$, and $\mu \in M_+(\mathbb{D}^-)$ be such that $(\Theta H^2)^{\perp} \hookrightarrow L^2(\mu)$. Suppose that

$$\inf_{I} \frac{\mu(S(I))}{m(I)} > 0,$$

Theorem (BFGHR (2012))

Let Θ be an inner function, Σ be a dominating set for $(\Theta H^2)^{\perp}$, and $\mu \in M_+(\mathbb{D}^-)$ be such that $(\Theta H^2)^{\perp} \hookrightarrow L^2(\mu)$. Suppose that

$$\inf_{I} \frac{\mu(S(I))}{m(I)} > 0,$$

Theorem (BFGHR (2012))

Let Θ be an inner function, Σ be a dominating set for $(\Theta H^2)^{\perp}$, and $\mu \in M_+(\mathbb{D}^-)$ be such that $(\Theta H^2)^{\perp} \hookrightarrow L^2(\mu)$. Suppose that

$$\inf_{I} \frac{\mu(S(I))}{m(I)} > 0,$$

Theorem (BFGHR (2012))

Let Θ be an inner function, Σ be a dominating set for $(\Theta H^2)^{\perp}$, and $\mu \in M_+(\mathbb{D}^-)$ be such that $(\Theta H^2)^{\perp} \hookrightarrow L^2(\mu)$. Suppose that

$$\inf_{I} \frac{\mu(S(I))}{m(I)} > 0,$$