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Standard fractional singular kernels

@ Let 0 < a < n. Consider a kernel function K*(x, y) defined on
IR" x IR" satisfying the fractional size and smoothness conditions,

K (xy)| < Clx—y["",
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Standard fractional singular kernels

@ Let 0 < a < n. Consider a kernel function K*(x, y) defined on
R"” x IR" satisfying the fractional size and smoothness conditions,

K (xy)l < Clx—y|™", (1)
x — x| _ Ix=x'| 1
|K(X(X,y) _ KD( (X/,_y)| < C| | _ ’a n < -
T x =y x—y| 72
/ !/
- - 1
Ko PTY NI 2t 4 RIVNT ST e 4 R
(K 0x) S C!X—y! b=y Ix—y| — 2

@ The Cauchy integral C! in the complex plane arises when
K(x,y) = %y x,y € C. The fractional size and smoothness

X
condition (1) holds with n =2 and @ = 1 in this case.
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Standard fractional singular integrals

Definition

We say that T* is a standard a-fractional integral operator with kernel K*
if T* is a bounded linear operator from some LP (R") to some L7 (R") for
some fixed 1 < p < g < oo, that is

[T Nl parey < ClIfllorny, € LP(R7),

if K*(x,y) is defined on R"” x R" and satisfies (1), and if T* and K* are
related by

T*f(x) = /K“(x,y)f(y)dy, a.e-x ¢ supp f,

whenever f € LP (R") has compact support in R”. We say K*(x, y) is a
standard w-fractional kernel if it satisfies (1).
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The basic problem

Given two locally finite positive Borel measures ¢ and w on R”, and a

standard a-fractional integral operator T, characterize the boundedness of
T, from L2 (o) to L? (w):

1 1
2 2
(/ \Tfa|2dw) ng</ |f|2d0> . fel®(o),
R" Rn

uniformly over all smooth truncations of the operator T.
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Toward a geometric characterization

The weightless T1 theorem

@ In 1984 David and Journé showed that if K (x, y) is a standard kernel
on IR”,

Clx—y|™",

o (1K= x]\°
Clx—yl < - ) ,
x =yl

K (x.y)]

’K(x',y) —K(X,y)| 4 ..

IA

IN
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Toward a geometric characterization

The weightless T1 theorem

@ In 1984 David and Journé showed that if K (x, y) is a standard kernel
on R",

Kyl < Clx—=y[™",
/ o
/ . < o |-n Ix" — x|
K (X y) = K(xy)|+.. < Clx—y| <|X—y| :

e and if Tf (x) = [, K (x,y) f (y)dy for x & supp f, then T is
bounded on L? (R") if and only if T € WBP and
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Toward a geometric characterization

The weightless T1 theorem

@ In 1984 David and Journé showed that if K (x, y) is a standard kernel
on R",

K(xy)l < Clx—y|™"
/ _ e |Xl—x| )
K (<.y) = Koy 4o < Clemyl " (2E221)

o and if Tf (x) = [z, K (x,y) f (y)dy for x & supp f, then T is
bounded on L2 (R") if and only if T € WBP and

Definition (T1 or testing conditions)

T1€ BMO (@/Q\TXQ|2§CIQ|>.

T*1 € BMO (@/Q}T*mfgqm).

E. Sawyer (McMaster University) Two weight theorems May 23, 2013 5/

43



The Hilbert transform

as singular integral

The Hilbert transform Hf arose in 1905 in connection with Hilbert's
twenty-first problem, and for f € L2 (R) is defined almost everywhere by
the principal value singular integral

HEG) = pv. [ 2 f(y)dy

1
lim / f(y)dy, aex€clR.
e=0Jjy—x|>e Yy — X

The convolution kernel of H

E. Sawyer (McMaster University) Two weight theorems May 23, 2013 6 /43



Toward a geometric characterization

@ In 2004 Nazarov, Treil and Volberg showed that if a weight pair
(w, o) satisfies the pivotal condition

00 |1
Z l‘w /"X/00)2 < P’% ’/O“T; P(/,V) B /“|2+X2

v(x),

and its dual for all decompositions of an interval ly into subintervals /,,
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Toward a geometric characterization

@ In 2004 Nazarov, Treil and Volberg showed that if a weight pair
(w, o) satisfies the pivotal condition

3 /
ZI’ o PUn 2, 0)2 < P2lll,; P(1,v) /“'I | v o),

+x2

and its dual for all decompositions of an interval ly into subintervals /,,

o then the Hilbert transform H satisfies the two weight L? inequality
/|H(fc7)\2dw < c/ 172 do,

uniformly for all smooth truncations of the Hilbert transform,
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Toward a geometric characterization

The NTV conditions

e if and only if the weight pair (w, o) satisfies
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Toward a geometric characterization

The NTV conditions

e if and only if the weight pair (w, o) satisfies

Definition (A2 condition on steroids)

supP(l,w)-P(l,0) = A} < 0,
/
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Toward a geometric characterization

The NTV conditions

e if and only if the weight pair (w, o) satisfies

Definition (A2 condition on steroids)

supP(l,w)-P(l,0) = A} < 0,
/

o as well as the two interval testing conditions
2
//|H()(,U)| do < I,

JIH @) do < (311,
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The Nazarov Treil Volberg conjecture

A question raised in Volberg's 2003 CBMS book, known as the NTV
conjecture, is whether or not

/R\H(fa)|2wgm/R|f|2a, fel?(o), 2)

is equivalent to the A, condition and the two interval testing conditions.
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The indicator/interval NTV conjecture

Theorem (Lacey, Sawyer, Shen and Uriarte-Tuero (2012))

The best constant M in the two weight inequality (2) for the Hilbert
transform satisfies

N~ VA + A+ A,

where U, 2A* are the best constants in the indicator/interval testing
conditions,

JIHAe)Pw <, [1H1ew) o <2 i,
for all intervals | and closed subsets E of I. Note that E does not appear

on the right side of these inequalities, and that if H were a positive
operator we could take E = |.
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The NTV conjecture

In January 2013 M. Lacey found the final stopping time and recursion
argument needed to finish the proof of the NTV conjecture.

Theorem (Lacey)
The best constant N in the two weight inequality (2) for the Hilbert
transform satisfies

N~/ A+T+35,
i.e. Hy is bounded from L? (¢) to L? (w) if and only if the strong A, and
interval testing conditions hold.
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Difficulties in higher dimensions

Positive derivative of the kernel

@ The arguments in dimension n = 1 are tied very closely to the
positivity of the derivative K’ (x) of the Hilbert transform kernel
K(x)= -1

X
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Difficulties in higher dimensions

Positive derivative of the kernel

@ The arguments in dimension n = 1 are tied very closely to the
positivity of the derivative K’ (x) of the Hilbert transform kernel
K(x)= -1

X

@ Indeed, this property underlies the necessity of energy,

. 00

2 el E (b @)’ P (I x,,0)* < E21hol, o= _ I

where

=\
e (ECJO(%ZM () ) |
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Difficulties in higher dimensions

Necessity of energy

@ The energy condition can be derived from the following elementary
calculation for —a < x' < x < a:

Hv (x) — Hv (x’) = /]R\[a’a] {yix — y_lx,}dV (v)

, 1
= (x=x) /IR\[aya] TESIET e

1 1
> (x— X / —dv .
4 ( ) JR\[-a,3] ¥? ¥
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Difficulties in higher dimensions

Necessity of energy

@ The energy condition can be derived from the following elementary
calculation for —a < x' < x < a:

Hv (x) — Hv (X') = /]R\[_a’a] {yix - y_lx,} dv (y)
= =) /R\[—a,a1 b=V

1
1 1
> = (x —x / —dv
> 7 (x=x) R\ o] Y2 (v)

—X/)

@ The kernels of singular integrals in higher dimension no longer have
such a positivity property, and this represents the major obstacle to
extending the ideas of Nazarov-Treil-Volberg,
Lacey-Sawyer-Shen-UriarteTuero and Lacey to dimension greater than
one.
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Haar functions adapted to a measure

@ The Haar function h{ adapted to a positive measure ¢ and a dyadic
interval | € D is a positive (negative) constant on the left (right)
child, has vanishing mean f h‘,’dU =0, and is normalized

171l ;2(p) = 1. For example if |[2,3][, = {5 and [[3,4]|, = 15, then

4T

The Haar function h‘[72’4}
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Haar functions adapted to a measure

@ The Haar function h{ adapted to a positive measure ¢ and a dyadic
interval | € D is a positive (negative) constant on the left (right)
child, has vanishing mean f h‘,’da =0, and is normalized

1A7 || 2(s) = 1. For example if |[2, 3], = = and |[3,4]|, = {5, then

4T

The Haar function h‘[72'4]

@ The supremum norm of h{ is quite large if ¢ is very unbalanced (not
doubling).
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Difficulties in higher dimensions

The monotonicity property

@ The positivity of the derivative of the kernel —% gives the
I\/Ionotonicity Property invoIving the Haar function

he = 7 ( T | 1, + o ‘ 1,}) and a signed measure v satisfying
[v| < 1g\,p: namely (Hv, h’)  equals

| H () B () do (x +/Hv ") b (x) deo (x')

- /// [Hu (x) — Hy (x)] | ()| dew (') [ K2 (x)] dew (x)
_ /M//[R\I _i_X_X/>d1/(y)}hj"(x’)‘dw(x’)\hj"(x)|dw
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Difficulties in higher dimensions

The monotonicity property

@ The positivity of the derivative of the kernel —% gives the
Monotonicity Property invoIving the Haar function

Yw
[v] < 1gy p: namely (Hv, hi")  equals

hY = 1 ( o | 1, + o ‘ 1/+> and a signed measure v satisfying

| HY G B () do () + [ v () i (¢) deo ()
_ //+ | [Hv () = H ()] B ()| deo (') [B? ()] deo (x)
_ //+ I_/R\/ x—x ,)dv(y)|hj"( )| dw (') B (x)| dew

oandsincem20fory€lR\landel+andx’EL,we

have [(Hv, h) | < (Hu, K),, .
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Difficulties in higher dimensions

The monotonicity property

@ The positivity of the derivative of the kernel —% gives the
Monotonicity Property invoIving the Haar function

hY = % ( T | 1, + . ‘ 1/+> and a signed measure v satisfying

[v] < 1gy p: namely (Hv, hi")  equals
| HY G B () do () + [ v () i (¢) deo ()
_ //+ | [Hv () = H ()] B ()| deo (') [B? ()] deo (x)
_ /I+/I_/]R\/ x—x /)dv(y)|h7’( )| dw (') B (x)| dew
@ and since 0

m>0fory€]R\/andx€/+ and x’ € I_, we
have |(Hv, h) | < (Hu, h?) .
o If suppy C R\ 2/, then (Hpu, hy) =~ 25 (1),
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Difficulties in higher dimensions

An essential property of minimal bounded fluctuation

@ If f is of minimal bounded fluctuation, then there is a collection /Cr
of pairwise disjoint subintervals of / such that

f= Y F() =Y Af,
lentky lenkr

where if | = K, then K = I_, the child of | with smallest
o-measure.
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Difficulties in higher dimensions

An essential property of minimal bounded fluctuation

o If f is of minimal bounded fluctuation, then there is a collection I
of pairwise disjoint subintervals of / such that

f= Y F() W= Y Aff

lentkr lenky

where if | = tK, then K = I_, the child of / with smallest
O-measure.
@ The key additional property, besides that of bounded fluctuation, of

such an f is
lE‘f+ A f >0, for all I € K.
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Difficulties in higher dimensions

An essential property of minimal bounded fluctuation

o If f is of minimal bounded fluctuation, then there is a collection I
of pairwise disjoint subintervals of / such that

f= Y F() W= Y Aff

lentkr lenky

where if | = tK, then K = I_, the child of / with smallest
U-measure.

@ The key additional property, besides that of bounded fluctuation, of

such an f is
]E‘,T+ AT f >0, forall I € Kr.

@ This no longer holds in higher dimensions. However, the stopping time
and recursion argument of Lacey circumvents the need for minimal
bounded fluctuation, and is a very robust argument needing only the
energy conditions, with no special properties of the Hilbert transform.
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The main theorem

Theorem (Sawyer, Shen and Uriarte-Tuero)

Suppose that T* is a standard a-fractional Calderon-Zygmund operator on
R", and that w and o are positive Borel measures on R" without common
point masses. Set T*f = T (fo) for any smooth truncation of TY.
Suppose 0 < a < n. Then the operator T is bounded from L? (o) to
L2 (w), ie.

175l 2wy < 1l 20y - (3)

uniformly in smooth truncations of T*, and moreover

N, < G, <\/A"2‘+A"2"*+Sa+’£;+5a+£;),

provided that the following three conditions hold:
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A2 and Testing conditions

@ The two dual A5 conditions hold,

A5 = sup P*(Q,0) |Q|“’ < o0,
QeQr el
AS* = sup Q "77 P (Q,w) < oo,

eeo |QM
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A2 and Testing conditions

@ The two dual A5 conditions hold,

Q|
A5 = sup P*(Q,0 Yo < oo
= AT
AS* = sup %P"‘ (Q,w) < oo,
Qe [Q[»

@ and the two dual

testing conditions hold,
— 1/ T (100) P w < o0
QeQn |Q|(7 Q ’

1 . 2
= sup —/ T (1qw)| 0 < oo,
ecor |Qly, o‘( ) (1)
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Energy conditions

and the two dual energy conditions hold,

2
1 © P“ (Qr.lQ\Q 0') ~ 2
&) = ’ PY < 00,
(€x) qupQr |Q|arz< Q) H X[ 2y <
Q.Q€
2
1o (P (Qn1g0@) ) s |2
EN? = - P9 ,
(&) quUpQr Qlwrz:( | Q] ’ X2y =
Q.Q€

where the goodness parameters r and ¢ implicit in the definition of P are
fixed sufficiently large and small respectively depending on dimension, and

the two inequalities hold uniformly over all dyadic grids. The differing
Poisson kernels are defined below.
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Necessity of A2

J
@ Conversely, suppose 0 < o < n and that {TJ‘*} is a collection of
j=1
J
Calderén-Zygmund operators with standard kernels {KJ"‘} . In the
J:
range 0 < o < g we assume there is ¢ > 0 such that for each unit

vector u there is j satisfying

|Kf (x, x+tu)| > ct*™",  teR (4)

E. Sawyer (McMaster University) Two weight theorems May 23, 2013



Necessity of A2
J
~_is a collection of
J

o Conversely, suppose 0 < & < n and that {ijx} 1
J:

Calderén-Zygmund operators with standard kernels {KJ”‘} . In the

j=1
range 0 < o < g we assume there is ¢ > 0 such that for each unit

vector u there is j satisfying
‘Kf‘ (x,x + tu)| >t t € R. (4)

@ For the range g < & < n, we asume that for each m € {1, —1}",

there is a sequence of coefficients {)\J’" }jzl such that
J
Z ATKE (x, x + tu)| > ct™", teR. (5)
j=1

holds for all unit vectors u in the n-ant

Vi ={x€R":mix; >0for1 <i<n}, me{l —-1}".
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Necessity of A2 continued

o Furthermore, assume that each operator T/ is bounded from L2 (o)
to L2 (w),
177 Fll () = T [IFll 2(e -
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Necessity of A2 continued

@ Furthermore, assume that each operator Tj“ is bounded from L2 (0)
to L2 (w),
H TngB(w) < My ||f||L2((7) :

@ Then the fractional Ag‘ condition holds, and moreover,

AL ASE < O,
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Necessity of energy

e Conversely, suppose n =2 and 0 < a < 2, and that the Aj condition
holds, Ag‘ < 00, and that the dual cube testing conditions for an
a-fractional admissible local transform vector T9, hold,

I 2
T2, = sup —/ TY (100)|” w < oo,
T SUP Tl Q\ v (1go)|
2 1 ,
TH) = su —/ TY (low)| 0 < oo,
(%5, s 1o [ T (1ow)]
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Necessity of energy

o Conversely, suppose n =2 and 0 < a < 2, and that the A4 condition
holds, A5 < oo, and that the dual cube testing conditions for an
a-fractional admissible local transform vector T9, hold,

1 2
T2 = sup —/ Ty (1o0)|" w < oo,
T Qe |Ql, Q| M |
2 ]_ 5
‘IU) = su —/ TS, (1pw)|” o < oo.
(%5, s o Jo T (1ow)]

@ Then, provided the goodness parameters r and ¢ are fixed sufficiently
large and small respectively depending on dimension, the two dual
energy conditions hold, and moreover,

Ext+ & < C<\/A"2‘+A”2"*+iim +‘zﬁﬂ>.
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NTV theorem for local transforms

We have the following generalization of the NTV conjecture to fractional
admissible local vector transforms in dimension n = 2 with 0 < & < 1.

Corollary

Suppose n =2 and 0 < o < 1. An w-fractional admissible local vector
transform T4, = (T{, ..., T4) is bounded from L2 () to [* (w) if and
only if the fractional Ag‘ condition holds, i.e. Ag‘ < 00, and the dual cube
testing conditions for the fractional admissible local transform vector T},
hold, i.e. ‘ZTcArﬂ +‘I*,X/, < 00,
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Admissible local transforms

@ Define the rough teepee function Ak ,ougn associated with an interval
or arc K in the circle S as the unique function satisfying the three

properties that Ak rough

@ vanish outside K,
@ take the value 1 at the center of K,
@ and be affine on both of the children K1 of K.

May 23, 2013 24 / 43
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Admissible local transforms

@ Define the rough teepee function Ak rougn associated with an interval
or arc K in the circle S as the unique function satisfying the three
properties that Ak rough

@ vanish outside K,
@ take the value 1 at the center of K,
@ and be affine on both of the children K1 of K.

@ Then a smooth teepee function Ak on K is a smooth function on the
circle supported in K and such that

sup [Ax (0) = Ak rougn (8)] < e(|K]),
fest

where € (|K]) is a sufficiently small number depending on the length
|K| of the interval K.
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Admissible local transforms continued

@ Given a large positive integer m, let | = [—g—ﬁ %—Z) and set () to be

A;— Ajyx, where A; is a smooth teepee function on / and
Nj17(0) = Ay (0 + 1) is the rotation of A; by angle 7.
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Admissible local transforms continued

@ Given a large positive integer m, let | = [—g—,ﬁf g—ﬁ) and set () to be
Aj — Ajyx, where A is a smooth teepee function on / and

Ajy7 (0) = Ay (6 + 1) is the rotation of A by angle 7.

@ Then with M > m sufficiently large, we say that the collection of
rotated functions

02 a0 =0 (9 - 227;6) |

and the corresponding vector of odd convolution a-fractional singular
integrals,

~ (%)

2—un !

_ oM (
W= T =

is admissible provided m < M are taken large enough and € (|K]|) >0
is taken small enough.
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Poisson integrals

@ In higher dimensions, there are two natural ‘Poisson integrals’ P and
‘P that arise, the usual Poisson integral P that emerges in connection
with energy considerations, and a much smaller ‘reproducing’ Poisson
integral P that emerges in connection with size considerations - in
dimension n = 1 these two Poisson integrals coincide. For 0 < a < n,
any cube @ and any positive Borel measure y, let

P*(Q.u) = /]Rn( Q"

1
QI" + |x — xql )

Q
ke

1 2
Q1" + x = xql)

n+1l—ua d}l (X) !

n—o
1
n

P (Q.u) dit (x).
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Poisson integrals continued

@ Note that

o for 0 < o < n—1, P*is strictly larger that P?,
o fora = n—1, P* and P* coincide,
@ for n—1 < & < n, P¥ is strictly smaller that P~.
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Poisson integrals continued

@ Note that

o for 0 < o < n—1, P*is strictly larger that P?,
o fora = n—1, P* and P* coincide,
@ for n—1 < & < n, P¥ is strictly smaller that P~.

@ The standard Poisson integral P* appears in the energy conditions,
while the reproducing Poisson kernel P* appears in the A5 conditions.
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The good dyadic grids of NTV in dimension one

e Forany B = {B,} € {0,1}#, define the dyadic grid D to be the
collection of intervals

Dﬁ_{f<m4y+w+22’w>}
i<n neZ, keZ

and place the usual uniform probability measure IP on the space
{0,1}%.
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The good dyadic grids of NTV in dimension one

e Forany B = {B,} € {0,1}#, define the dyadic grid D to be the
collection of intervals

Dﬁ:{T<mJ%+k+Zp’%J}
i<n nEZ, keZ

and place the usual uniform probability measure IP on the space
{0,1}2.

@ For weights w and o, consider random choices of dyadic grids D%
and DY. Fix € > 0 and for a positive integer r, an interval J € D% is
said to be r-bad if there is an interval | € DV with |/| > 2"|J|, and

dist(e(/),J) < L|JE[1]F .

where e(/) is the set of the three discontinuities of h{. Otherwise, J
is said to be r-good.
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The good dyadic grids of NTV in dimension one

e Forany B = {B,} € {0,1}#, define the dyadic grid D to be the
collection of intervals

Dﬁ:{T<mJ%+h+22’%J}
i<n nEZ, keZ

and place the usual uniform probability measure IP on the space
{0,1}%.

@ For weights w and o, consider random choices of dyadic grids D%
and DY. Fix € > 0 and for a positive integer r, an interval J € D% is
said to be r-bad if there is an interval | € D7 with |/| > 2"|J|, and

dist(e(/),J) < L|JE[1)F .

where e(/) is the set of the three discontinuities of hJ. Otherwise, J
is said to be r-good.
@ We have
P (Jis r-bad) < C27%.
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Energy conditions

o Define P/ to be orthogonal projection onto the subspace of L2 (u)
consisting of functions supported in / with y-mean value zero.
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Energy conditions

@ Define P’f to be orthogonal projection onto the subspace of L? (u)
consisting of functions supported in / with y-mean value zero.

@ In addition, define Pfl to be orthogonal projection onto the subspace
L%(/) (u) of L2 (u) consisting of those functions f € L? () whose
Haar support is contained in

H(l) = {Je D" : either J C [ and |J|7 > 27" |I|" or J € /},

and where the notation J € /, read J is deeply embedded in /, means
1 1

that J C [, |[J|" <277 |l|", and that J satisfies the ‘good’ condition

relative to the cube /:

1 £ 1—¢
dist (J,31) > = |J| a8
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Energy conditions

@ Define P’f to be orthogonal projection onto the subspace of L? (u)
consisting of functions supported in / with y-mean value zero.

@ In addition, define Pf‘ to be orthogonal projection onto the subspace
Lr;‘_[(,) (u) of L2 (1) consisting of those functions f € L? (1) whose

Haar support is contained in
H (1) = {J € D" :either J C I and [J|7 > 27" |I]* or S 1},

and where the notation J € /, read J is deeply embedded in /, means
1 1

that J C [, |[J|» <277 |l|", and that J satisfies the ‘good’ condition

relative to the cube /:

dist (J,d/) ,M ]1]7

@ Here r € IN and 0 < € < 1 are the parameters in the definition of the
‘good’ dyadic grid below, and will be taken sufficiently large and small
respectively depending on the dimension n.
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Energy conditions continued

@ In dimension n =1 for « = 0, we defined the energy condition by

Z [l E (o i) P (1, 110)° < (€2)° 1],
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Energy conditions continued

@ In dimension n = 1 for « = 0, we defined the energy condition by

Y. el E (o ) P (1, 110)% < (€)% 1],
DUl
2

12

@ The extension of the energy conditions to higher dimensions will use
the smaller projection P?x in place of P’,lx, and as a result, it is
convenient to define the soft energy of p on a cube J by

2
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Energy conditions continued

@ Thus Egp (/, i) includes precisely those Haar coefficients (x, h‘j’a>w
for which J is either close to | or deeply embedded in /. In particular,
Esort (1, ) includes all of the Haar coefficients (x, h*?)  for which J
is good and contained in /, plus others.
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Energy conditions continued

@ Thus Egp (/, 1) includes precisely those Haar coefficients (x, h7"?) |
for which J is either close to /I or deeply embedded in /. In particular,
Esort (/, 1) includes all of the Haar coefficients (x, h*?)  for which J
is good and contained in /, plus others.

@ Then we define the forward energy condition in dimension n > 2 for
0<a<nby

Y Il Esofe () P* (1, Ly0)* < (E5)° 1],

DUl

Note that this definition of the energy condition depends on the
choice of goodness parameters r and .
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Controlling functional energy

F-adapted collections of intervals

Let F be a collection of dyadic cubes satisfying a Carleson condition

Y, |Fle=CrlSl,,  SeF
FeF: FCS

where Cr is referred to as the Carleson norm of F. A collection of
functions {gr } rer in L2(w) is said to be F-adapted if there are
collections of cubes J (F) C {J € D : J € F}, with J* (F) consisting
of the maximal dyadic cubes in J (F), such that the following three
conditions hold:
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F-adapted conditions

@ for each F € F, the Haar coefficients gr (J) = (gr, hy),, of gr are
nonnegative and supported in J (F), i.e.

{EF(J)ZO forall Je J(F) Fer

gr(J)=0 forall JgT(F) '

@ the collection of sets of cubes {J (F)}Frer is pairwise disjoint,

© and there is a positive constant C such that if J* (F) consists of the
maximal cubes in J (F), then for every cube / in DY, the set of pairs
of cubes (F, J*) that ‘straddle’ /,

Bi={(F.J):J*€J"(F) and J* C I CF},

satisfies the overlap condition } r j+)ep, 1+ < C, 1 €Dr.
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The functional energy condition

@ The functional energy condition is:

Definition

Let § be the smallest constant in the inequality below, holding for all
non-negative h € L2(c), all o-Carleson collections F, and all F-adapted

collections {gr } Fer:
nglJ*>
(Frerts),

Here J* (F) consists of the maximal intervals J in the collection J (F).

Y, ) P(J* ho)

FeF JxeJ*(F

1/2
< Slihllzo) [ )y ngl\iz(w)] :
FeF
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The functional energy condition

@ The functional energy condition is:

Let § be the smallest constant in the inequality below, holding for all
non-negative h € L2(c), all o-Carleson collections F, and all F-adapted

collections {gr } Fer:
nglJ*>
(Frerts),

Here J* (F) consists of the maximal intervals J in the collection J (F).

Y, ) P(J* ho)

FeF JxeJ*(F

1/2
< Slihllzo) [ )y ngl\iz(w)] :
FeF

@ The dual version of this condition has constant §*.
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Equivalence of functional energy and energy

Now we show that the functional energy constants are equivalent to the
energy constants modulo Aj. First we use the two weight Poisson
characterization to obtain

Ba S+ VA and §, S &+ A

Then we use an easy duality argument to show that

S < Fu and £ <55
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Necessity of the functional energy condition

The energy measure in the plane

@ To prove the first lemma we fix F and set

2
X

W=, Z 7

w
F,J*
FeF JxeJ*(

“O(e(s) )

L2(w)

where the projections P¥ ;. onto Haar functions are defined by

w J— w
PF'J* p— Z AJ .
JCJ* mrd=F
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Necessity of the functional energy condition

The energy measure in the plane

@ To prove the first lemma we fix F and set

2

w X
F,J J*|

n=), )

FEF J*€J*(F)

O o)) (7)

L2(w)

where the projections P ;. onto Haar functions are defined by

w — w
JCJ*: mpd=F

@ Here §, denotes a Dirac unit mass at a point g in the upper half plane
]Ri. Note that we can replace x by x — ¢ for any choice of ¢ we wish.
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Two weight Poisson inequality

@ We prove the two-weight inequality
IPCFO) 2 r2 gy S I lle2e) (8)

for all nonnegative f in L2 (), noting that F and f are not related
here.
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Two weight Poisson inequality

@ We prove the two-weight inequality
IP(Fo)l 2 r2 gy S I lle2e) (8)

for all nonnegative f in L2 (¢), noting that F and f are not related
here.

@ Above, IP(-) denotes the Poisson extension to the upper half-plane, so
that in particular

2

w X

IP(Fo) 2z gy = 2 E ]P(fff)(C(J*),\J*I)Q

FeF JreJ*(

L2(w)

and so (8) implies (6) by the Cauchy-Schwarz inequality.
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Reduction to Poisson tent testing

By the two-weight inequality for the Poisson operator, inequality (8)
requires checking these two inequalities

Ju

P (1,0) (x, )2 dp (x, 1) = [P (L0) 2, S (A2 +T2) 0(1), (9)

I (1)Po(a) < Az [ o, db) (10)

for all dyadic intervals | € D, where T = I x [0, |/]] is the box over / in the
upper half-plane, and

2

P*(t15) = /A (dy, dt) .

24 x— yPF

E. Sawyer (McMaster University) Two weight theorems May 23, 2013 38 / 43



Checking the Poisson testing conditions

@ The main technical lemma used in proving (9) is this.

We have
2
P* (J* 1) O
Y < ( {\F)> HPFJ*X\B <E(N).  (11)
FEF, Jxe M(F) |J*| "
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Checking the Poisson testing conditions

@ The main technical lemma used in proving (9) is this.

We have

2
P* (J* 1) O
Y or (%) P2l S E200). (11

FEF J*e M(F)

@ The proof is by duality and uses that the collection F satisfies a
Carleson condition, hence has geometric decay in generations:

Y. IFl.g27%, . k=0
FeF: d(F)=k

which permits summing up energy condition estimates over
generations.
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Necessity of the energy condition

Reverse energy inequality

Lemma (Local Reverse Energy)

Suppose that | and J are squares in R? such that vJ C I, and that u is a
positive measure on R? supported outside |. Suppose that {Té"}?; is as
above with 0 < & < 2. Then for v > 1 sufficiently large, and 1 = g—ff,
sufficiently small, and M > m sufficiently large, and € (|K|) = € (2n)
sufficiently small, we have the estimate

& dw(x dw(z " ®
E(J,w)?P* (4, 1) S GBS BT ® T80 (x) — Ty (2),
where

1
Jﬁ
Pr(Jp) ~ /|y—|cJ’|"+1_”‘dV(y)'

c; = (cj,....c]) is the center of J.
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Necessity of weak energy

For 0 < a < 1 we have %k < T2 . Indeed, using local reverse energy
with p =1\ ;..0, we ‘plug the hole’ in /'\ Ji* to obtain

NN
MS g
g
_—

=

<

=

S

S

Q

g

Z /|Ta 1,0)? dw+2 Y /|TM1JW} dw

r=1J r= IJ*EM
< /|Ta 1,0)* dw + Z Y / T41,0]” dw
r=1J:e M(l ’
< mlllﬁz Yo T 1, ST U,

r=1JreM(l,)
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Necessity of the energy condition

For 0 < a < 1 we have the energy condition &, < TT%, + /A5 Indeed,

~

1 & (P 10)) S
i Z( ) &,

1
o r=1 |/r|Z
1o (P 1,,0)\
3B (PR ¢ oo
e = [l JeH(Iy)
R P (U5, 1,0) S
< oYy Y [—= Y XY ()7 )+ 0K
e = JreM(ly) |J*|» JcJ
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Open problems

@ s the energy condition necessary for boundedness of the Riesz
transform vector?
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Open problem

@ Is the energy condition necessary for boundedness of the Riesz
transform vector?

@ Is the Aj condition necessary for boundedness of elliptic vector
transforms when 5 < a < n?
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Open problems

@ Is the energy condition necessary for boundedness of the Riesz
transform vector?

@ Is the AS condition necessary for boundedness of elliptic vector
transforms when 7 < a < n?

© What should play the roles of the Poisson kernels P* and P*, and the
A5 condition and energy condition &, for the boundedness of a single
operator T, such as an individual Riesz transform R;?
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Open problems

@ Is the energy condition necessary for boundedness of the Riesz
transform vector?

@ Is the AS condition necessary for boundedness of elliptic vector
transforms when 7 < a < n?

© What should play the roles of the Poisson kernels P* and P*, and the
A5 condition and energy condition &, for the boundedness of a single
operator T, such as an individual Riesz transform R;?

Q What is the free two weight norm inequality?
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Open problems

@ Is the energy condition necessary for boundedness of the Riesz
transform vector?

@ Is the AS condition necessary for boundedness of elliptic vector
transforms when 7 < a < n?

© What should play the roles of the Poisson kernels P* and P*, and the
A5 condition and energy condition &, for the boundedness of a single
operator T, such as an individual Riesz transform R;?

@ What is the free two weight norm inequality?

@ THANKS to the organizers for a wonderful conference!
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