Two weight theorems and a characterization for admissible local transforms

Eric T. Sawyer reporting on joint work with Chun-Yen Shen Ignacio Uriarte-Tuero

Hilbert function spaces, Gargnano

May 23, 2013

Let $0 \le \alpha < n$. Consider a kernel function $K^{\alpha}(x, y)$ defined on $\mathbb{R}^n \times \mathbb{R}^n$ satisfying the fractional size and smoothness conditions,

$$
|K^{\alpha}(x,y)| \leq C |x-y|^{\alpha-n}, \qquad (1)
$$

$$
|K^{\alpha}(x,y) - K^{\alpha}(x',y)| \leq C \frac{|x-x'|}{|x-y|} |x-y|^{\alpha-n}, \qquad \frac{|x-x'|}{|x-y|} \leq \frac{1}{2},
$$

$$
|K^{\alpha}(x,y) - K^{\alpha}(x,y')| \leq C \frac{|y-y'|}{|x-y|} |x-y|^{\alpha-n}, \qquad \frac{|y-y'|}{|x-y|} \leq \frac{1}{2}.
$$

4 0 8

Let $0 \le \alpha < n$. Consider a kernel function $K^{\alpha}(x, y)$ defined on $\mathbb{R}^n \times \mathbb{R}^n$ satisfying the fractional size and smoothness conditions,

$$
|K^{\alpha}(x, y)| \leq C |x - y|^{\alpha - n}, \qquad (1)
$$

$$
|K^{\alpha}(x, y) - K^{\alpha}(x', y)| \leq C \frac{|x - x'|}{|x - y|} |x - y|^{\alpha - n}, \qquad \frac{|x - x'|}{|x - y|} \leq \frac{1}{2},
$$

$$
|K^{\alpha}(x, y) - K^{\alpha}(x, y')| \leq C \frac{|y - y'|}{|x - y|} |x - y|^{\alpha - n}, \qquad \frac{|y - y'|}{|x - y|} \leq \frac{1}{2}.
$$

The Cauchy integral C^1 in the complex plane arises when $K(x, y) = \frac{1}{x-y}$, $x, y \in \mathbb{C}$. The fractional size and smoothness condition [\(1\)](#page-1-0) holds with $n = 2$ and $\alpha = 1$ in this case.

E. Sawyer (McMaster University) [Two weight theorems](#page-0-0) May 23, 2013 2 / 43

Definition

We say that \mathcal{T}^{α} is a *standard α-fractional integral operator with kernel* \mathcal{K}^{α} if \mathcal{T}^{α} is a bounded linear operator from some $L^p\left(\mathbb{R}^n\right)$ to some $L^q\left(\mathbb{R}^n\right)$ for some fixed $1 < p \le q < \infty$, that is

$$
\|T^{\alpha}f\|_{L^{q}(\mathbb{R}^n)}\leq C\left\|f\right\|_{L^{p}(\mathbb{R}^n)},\quad f\in L^{p}(\mathbb{R}^n),
$$

if $K^{\alpha}(x, y)$ is defined on $\mathbb{R}^{n} \times \mathbb{R}^{n}$ and satisfies [\(1\)](#page-1-0), and if \mathcal{T}^{α} and K^{α} are related by

$$
T^{\alpha}f(x)=\int K^{\alpha}(x,y)f(y)dy, \qquad \text{a.e.-}x \notin supp \ f,
$$

whenever $f \in L^p(\mathbb{R}^n)$ has compact support in \mathbb{R}^n . We say $K^{\alpha}(x, y)$ is a standard *α-fractional kernel* if it satisfies [\(1\)](#page-1-0).

4 ロ ▶ 4 包

 200

Given two locally finite positive Borel measures σ and ω on \mathbb{R}^n , and a standard *α*-fractional integral operator T, characterize the boundedness of T_{σ} from $L^2(\sigma)$ to $L^2(\omega)$:

$$
\left(\int_{\mathbb{R}^n}|\mathit{Tf}\sigma|^2\,d\omega\right)^{\frac{1}{2}}\leq \mathfrak{N}_\mathcal{T}\left(\int_{\mathbb{R}^n}|f|^2\,d\sigma\right)^{\frac{1}{2}},\qquad f\in L^2\left(\sigma\right),
$$

uniformly over all smooth truncations of the operator T .

4 0 8

Toward a geometric characterization The weightless T1 theorem

• In 1984 David and Journé showed that if $K(x, y)$ is a standard kernel on **R**ⁿ ,

$$
|K(x,y)| \leq C |x-y|^{-n},
$$

$$
|K(x',y) - K(x,y)| + ... \leq C |x-y|^{-n} \left(\frac{|x'-x|}{|x-y|} \right)^{\delta},
$$

4 0 8

 QQQ

Toward a geometric characterization

The weightless T1 theorem

• In 1984 David and Journé showed that if $K(x, y)$ is a standard kernel on \mathbb{R}^n ,

$$
|K(x,y)| \leq C |x-y|^{-n},
$$

$$
|K(x',y) - K(x,y)| + ... \leq C |x-y|^{-n} \left(\frac{|x'-x|}{|x-y|} \right)^{\delta},
$$

and if $Tf(x) \equiv \int_{\mathbb{R}^n} K(x, y) f(y) dy$ for $x \notin supp f$, then T is bounded on $L^2(\mathbb{R}^n)$ if and only if $T \in WBP$ and

Toward a geometric characterization

The weightless T1 theorem

• In 1984 David and Journé showed that if $K(x, y)$ is a standard kernel on \mathbb{R}^n ,

$$
|K(x,y)| \leq C |x-y|^{-n},
$$

$$
|K(x',y) - K(x,y)| + ... \leq C |x-y|^{-n} \left(\frac{|x'-x|}{|x-y|} \right)^{\delta},
$$

and if $Tf(x) \equiv \int_{\mathbb{R}^n} K(x, y) f(y) dy$ for $x \notin supp f$, then T is bounded on $L^2(\mathbb{R}^n)$ if and only if $T \in WBP$ and

Definition ($T1$ or testing conditions)

$$
T1 \in BMO \quad \left(\Leftrightarrow \int_Q |T\chi_Q|^2 \le C |Q| \right),
$$

$$
T^*1 \in BMO \quad \left(\Leftrightarrow \int_Q |T^*\chi_Q|^2 \le C |Q| \right)
$$

.

The Hilbert transform

as singular integral

The Hilbert transform Hf arose in 1905 in connection with Hilbert's twenty-first problem, and for $f \in L^2(\mathbb{R})$ is defined almost everywhere by the *principal value* singular integral

$$
Hf(x) = p.v. \int \frac{1}{y-x} f(y) dy
$$

$$
\equiv \lim_{\varepsilon \to 0} \int_{|y-x| > \varepsilon} \frac{1}{y-x} f(y) dy, \quad a.e. x \in \mathbb{R}.
$$

E. Sawyer (McMaster University) [Two weight theorems](#page-0-0) May 23, 2013 6 / 43

Toward a geometric characterization

• In 2004 Nazarov, Treil and Volberg showed that if a weight pair (ω, σ) satisfies the pivotal condition

$$
\sum_{r=1}^{\infty} |I_r|_{\omega} P(I_r, \chi_{I_0} \sigma)^2 \leq \mathcal{P}_*^2 |I_0|_{\sigma}; \quad P(I, \nu) = \int \frac{|I|}{|I|^2 + x^2} d\nu(x),
$$

and its dual for all decompositions of an interval I_0 into subintervals I_{ϵ} ,

Toward a geometric characterization

• In 2004 Nazarov, Treil and Volberg showed that if a weight pair (ω, σ) satisfies the pivotal condition

$$
\sum_{r=1}^{\infty} |I_r|_{\omega} P(I_r, \chi_{I_0} \sigma)^2 \leq \mathcal{P}_*^2 |I_0|_{\sigma}; \quad P(I, \nu) = \int \frac{|I|}{|I|^2 + x^2} d\nu(x),
$$

and its dual for all decompositions of an interval l_0 into subintervals l_r ,

then the Hilbert transform H satisfies the two weight L^2 inequality

$$
\int \left|H\left(f\sigma\right)\right|^2 d\omega \leq C \int \left|f\right|^2 d\sigma,
$$

uniformly for all smooth truncations of the [Hi](#page-9-0)l[be](#page-11-0)[r](#page-0-0)[t](#page-9-0) [t](#page-10-0)r[a](#page-0-0)[n](#page-1-1)[sfo](#page-76-0)r[m](#page-1-1)[,](#page-76-0)

• if and only if the weight pair (ω, σ) satisfies

4 0 8

 QQ

• if and only if the weight pair (ω, σ) satisfies

Definition ($A₂$ condition on steroids)

$$
\sup_{I} \mathsf{P}(I,\omega) \cdot \mathsf{P}(I,\sigma) \equiv \mathcal{A}_2^2 < \infty \,,
$$

4 0 8

• if and only if the weight pair (ω, σ) satisfies

Definition ($A₂$ condition on steroids)

$$
\sup_{I} P(I, \omega) \cdot P(I, \sigma) \equiv \mathcal{A}_2^2 < \infty,
$$

• as well as the two *interval testing* conditions

$$
\int_{I} |H(\chi_{I}\sigma)|^{2} d\omega \leq \mathfrak{T}^{2} |I|_{\sigma},
$$

$$
\int_{I} |H(\chi_{I}\omega)|^{2} d\sigma \leq (\mathfrak{T}^{*})^{2} |I|_{\omega}
$$

 200

.

4 0 8

A question raised in Volberg's 2003 CBMS book, known as the NTV conjecture, is whether or not

$$
\int_{\mathbb{R}} \left| H\left(f\sigma\right) \right|^2 \omega \leq \mathfrak{N} \int_{\mathbb{R}} \left| f \right|^2 \sigma, \qquad f \in L^2\left(\sigma\right),\tag{2}
$$

is equivalent to the \mathcal{A}_2 condition and the two interval testing conditions.

 200

Theorem (Lacey, Sawyer, Shen and Uriarte-Tuero (2012))

The best constant $\mathfrak N$ in the two weight inequality [\(2\)](#page-14-0) for the Hilbert transform satisfies

$$
\mathfrak{N} \approx \sqrt{\mathcal{A}_2} + \mathfrak{A} + \mathfrak{A}^*,
$$

where $\mathfrak{A},\mathfrak{A}^*$ are the best constants in the indicator/interval testing conditions,

$$
\int_I |H(\mathbf{1}_E \sigma)|^2 \omega \leq \mathfrak{A} |I|_{\sigma}, \quad \int_I |H(\mathbf{1}_E \omega)|^2 \sigma \leq \mathfrak{A}^* |I|_{\omega},
$$

for all intervals I and closed subsets E of I. Note that E does not appear on the right side of these inequalities, and that if H were a positive operator we could take $E = I$.

In January 2013 M. Lacey found the final stopping time and recursion argument needed to finish the proof of the NTV conjecture.

Theorem (Lacey)

The best constant $\mathfrak N$ in the two weight inequality [\(2\)](#page-14-0) for the Hilbert transform satisfies

$$
\mathfrak{N} \approx \sqrt{\mathcal{A}_2} + \mathfrak{T} + \mathfrak{T}^*,
$$

i.e. H_{σ} is bounded from $L^2\left(\sigma\right)$ to $L^2\left(\omega\right)$ if and only if the strong A_2 and interval testing conditions hold.

 200

Positive derivative of the kernel

• The arguments in dimension $n = 1$ are tied very closely to the *positivity* of the derivative $\mathcal{K}'\left(x\right)$ of the Hilbert transform kernel $K(x) = -\frac{1}{x}$.

4 0 8

Positive derivative of the kernel

- The arguments in dimension $n = 1$ are tied very closely to the *positivity* of the derivative $\mathcal{K}'\left(x\right)$ of the Hilbert transform kernel $K(x) = -\frac{1}{x}$.
- Indeed, this property underlies the necessity of energy,

$$
\sum_{r=1}^{\infty} |I_r|_{\omega} \mathsf{E} (I_r, \omega)^2 \mathsf{P} (I_r, \chi_{I_0} \sigma)^2 \leq \mathcal{E}^2 |I_0|_{\sigma}, \quad I_0 = \bigcup_{r=1}^{\infty} I_r,
$$

where

$$
E(J,\omega) \equiv \left(\mathbb{E}_J^{\omega(dx)} \mathbb{E}_J^{\omega(dx')} \left(\frac{|x - x'|}{|J|} \right)^2 \right)^{1/2},
$$

Necessity of energy

• The energy condition can be derived from the following elementary calculation for $-a \leq x' < x \leq a$:

$$
Hv(x) - Hv(x') = \int_{\mathbb{R}\setminus[-a,a]} \left\{ \frac{1}{y-x} - \frac{1}{y-x'} \right\} dv(y)
$$

= $(x-x') \int_{\mathbb{R}\setminus[-a,a]} \frac{1}{(y-x)(y-x')} dv(y)$

$$
\geq \frac{1}{4} (x-x') \int_{\mathbb{R}\setminus[-a,a]} \frac{1}{y^2} dv(y).
$$

4 D F

 298

Necessity of energy

The energy condition can be derived from the following elementary calculation for $-a \leq x' < x \leq a$:

$$
Hv(x) - Hv(x') = \int_{\mathbb{R}\setminus[-a,a]} \left\{ \frac{1}{y-x} - \frac{1}{y-x'} \right\} dv(y)
$$

= $(x-x') \int_{\mathbb{R}\setminus[-a,a]} \frac{1}{(y-x)(y-x')} dv(y)$

$$
\geq \frac{1}{4} (x-x') \int_{\mathbb{R}\setminus[-a,a]} \frac{1}{y^2} dv(y).
$$

The kernels of singular integrals in higher dimension no longer have such a positivity property, and this represents the major obstacle to extending the ideas of Nazarov-Treil-Volberg, Lacey-Sawyer-Shen-UriarteTuero and Lacey to dimension greater than one.

∢ ロ ▶ ィ 何

Haar functions adapted to a measure

The Haar function h^{σ}_{l} adapted to a positive measure σ and a dyadic interval $I \in \mathcal{D}$ is a positive (negative) constant on the left (right) child, has vanishing mean $\int h^{\sigma}_I d\sigma = 0$, and is normalized $||h^{\sigma}_I||_{L^2(\sigma)} = 1$. For example if $|[2,3]|_{\sigma} = \frac{1}{15}$ and $|[3,4]|_{\sigma} = \frac{1}{10}$, then

Haar functions adapted to a measure

The Haar function h^{σ}_{l} adapted to a positive measure σ and a dyadic interval $I \in \mathcal{D}$ is a positive (negative) constant on the left (right) child, has vanishing mean $\int h^{\sigma}_I d\sigma = 0$, and is normalized $\|h^{\sigma}_{I}\|_{L^{2}(\sigma)}=1.$ For example if $\left| [2,3]\right| _{\sigma}=\frac{1}{15}$ and $\left| [3,4]\right| _{\sigma}=\frac{1}{10},$ then

The Haar function $h^{\sigma}_{[2,4]}$

The supremum norm of h^{σ}_{I} is quite large if σ is very unbalanced (not doubling). Ω

E. Sawyer (McMaster University) [Two weight theorems](#page-0-0) May 23, 2013 14 / 43

The monotonicity property

The positivity of the derivative of the kernel $-\frac{1}{x}$ gives the Monotonicity Property involving the Haar function $\theta_I^\omega = \frac{1}{\gamma_\omega}$ $\left(-\frac{1}{|I-|_\omega}\mathbf{1}_{I-} + \frac{1}{|I+|_\omega}\mathbf{1}_{I_+}\right)$ and a signed measure ν satisfying $|\nu| \leq \mathbf{1}_{\mathbb{R}\setminus I} \mu$: namely $\left\langle H\nu, h^{\omega}_I \right\rangle_{\omega}$ equals Z I+ H*ν* (x) h *ω* I (x) d*ω* (x) + Z $\frac{1}{2}$ *Hν* (x') $h_l^ω(x')$ dω (x') $=$ I_{+} Z $\frac{1}{2}$ $[Hv(x) - Hv(x')]$ $|h_l^{\omega}(x')|$ $d\omega(x')$ $|h_l^{\omega}(x)|$ $d\omega(x)$ $=$ I_{+} Z \overline{a} Z $\mathbb{R}\setminus I$ $\frac{x-x'}{x}$ $\int \frac{x - x}{(y - x)(y - x')} dv(y) |h_l^{\omega}(x')| d\omega (x') |h_l^{\omega}(x)| d\omega$

The monotonicity property

- The positivity of the derivative of the kernel $-\frac{1}{x}$ gives the Monotonicity Property involving the Haar function $h^{\omega}_I = \frac{1}{\gamma_{\omega}}$ $\left(-\frac{1}{|I_-|_\omega}\mathbf{1}_{I_-}+\frac{1}{|I_+|_\omega}\mathbf{1}_{I_+}\right)$ and a signed measure ν satisfying $|\nu| \leq \mathbf{1}_{\mathbb{R}\setminus I} \mu$: namely $\left\langle H\nu, h^{\omega}_I \right\rangle_{\omega}$ equals Z I+ H*ν* (x) h *ω* I (x) d*ω* (x) + Z $\frac{1}{2}$ $H\nu\left(x'\right)h_{I}^{\omega}\left(x'\right)d\omega\left(x'\right)$ $=$ I_+ Z $\frac{1}{2}$ $[Hv(x) - Hv(x')]$ $|h_l^{\omega}(x')|$ $d\omega(x')$ $|h_l^{\omega}(x)|$ $d\omega(x)$ $=$ I_{+} Z $\frac{1}{2}$ Z $\mathbb{R}\setminus I$ $\frac{x-x'}{x}$ $\int \frac{x - x}{(y - x)(y - x')} dv(y) |h_l^{\omega}(x')| d\omega (x') |h_l^{\omega}(x)| d\omega$ and since $\frac{x-x'}{(y-x)(y-x')} \ge 0$ for $y \in \mathbb{R} \setminus I$ and $x \in I_+$ and $x' \in I_-$, we
- $|\langle Hv, h_l^{\omega} \rangle_{\omega}^{'}| \leq \langle H\mu, h_l^{\omega} \rangle_{\omega}$.

The monotonicity property

The positivity of the derivative of the kernel $-\frac{1}{x}$ gives the Monotonicity Property involving the Haar function $h^{\omega}_I = \frac{1}{\gamma_{\omega}}$ $\left(-\frac{1}{|I_-|_\omega}\mathbf{1}_{I_-}+\frac{1}{|I_+|_\omega}\mathbf{1}_{I_+}\right)$ and a signed measure ν satisfying $|\nu| \leq \mathbf{1}_{\mathbb{R}\setminus I} \mu$: namely $\left\langle H\nu, h^{\omega}_I \right\rangle_{\omega}$ equals Z I+ H*ν* (x) h *ω* I (x) d*ω* (x) + Z $\frac{1}{2}$ $H\nu\left(x'\right)h_{I}^{\omega}\left(x'\right)d\omega\left(x'\right)$ $=$ I_+ Z $\frac{1}{2}$ $[Hv(x) - Hv(x')]$ $|h_l^{\omega}(x')|$ $d\omega(x')$ $|h_l^{\omega}(x)|$ $d\omega(x)$ $=$ I_{+} Z $\frac{1}{2}$ Z $\mathbb{R}\setminus I$ $\frac{x-x'}{x}$ $\int \frac{x - x}{(y - x)(y - x')} dv(y) |h_l^{\omega}(x')| d\omega (x') |h_l^{\omega}(x)| d\omega$ and since $\frac{x-x'}{(y-x)(y-x')} \ge 0$ for $y \in \mathbb{R} \setminus I$ and $x \in I_+$ and $x' \in I_-$, we $|\langle Hv, h_l^{\omega} \rangle_{\omega}^{\vee}| \leq \langle H\mu, h_l^{\omega} \rangle_{\omega}$. If $\mathrm{supp}\,\mu\subset\mathbb{R}\setminus 2I,$ then $\left\langle H\mu,h^{\omega}_I\right\rangle_{\omega}\approx\frac{\mathrm{P}(I,\mu)}{|I|}$ $\frac{I,\mu)}{|I|} \widehat{\chi}(I).$

An essential property of minimal bounded fluctuation

If f is of minimal bounded fluctuation, then there is a collection K_f of pairwise disjoint subintervals of I such that

$$
f = \sum_{l \in \pi K_f} \widehat{f}(l) \ \ h_l^{\sigma} = \sum_{l \in \pi K_f} \Delta_l^{\sigma} f,
$$

where if $I = \pi K$, then $K = I_$, the child of I with smallest *σ*-measure.

4 0 8

An essential property of minimal bounded fluctuation

• If f is of minimal bounded fluctuation, then there is a collection \mathcal{K}_f of pairwise disjoint subintervals of I such that

$$
f = \sum_{l \in \pi K_f} \widehat{f}(l) \, h_l^{\sigma} = \sum_{l \in \pi K_f} \Delta_l^{\sigma} f,
$$

where if $I = \pi K$, then $K = I_{-}$, the child of I with smallest *σ*-measure.

• The key additional property, besides that of bounded fluctuation, of such an f is

$$
\mathbb{E}_{I_+}^{\sigma} \triangle_I^{\sigma} f \geq 0, \quad \text{for all } I \in \mathcal{K}_f.
$$

 200

An essential property of minimal bounded fluctuation

• If f is of minimal bounded fluctuation, then there is a collection \mathcal{K}_f of pairwise disjoint subintervals of I such that

$$
f = \sum_{l \in \pi K_f} \widehat{f}(l) \, h_l^{\sigma} = \sum_{l \in \pi K_f} \Delta_l^{\sigma} f,
$$

where if $I = \pi K$, then $K = I_{-}$, the child of I with smallest *σ*-measure.

• The key additional property, besides that of bounded fluctuation, of such an f is

$$
\mathbb{E}_{I_+}^{\sigma} \triangle_I^{\sigma} f \geq 0, \quad \text{for all } I \in \mathcal{K}_f.
$$

• This no longer holds in higher dimensions. However, the stopping time and recursion argument of Lacey circumvents the need for minimal bounded fluctuation, and is a very robust argument needing only the energy conditions, with no special propertie[s o](#page-27-0)[f](#page-29-0) [th](#page-25-0)[e](#page-28-0) [H](#page-29-0)[i](#page-0-0)[lb](#page-1-1)[er](#page-76-0)[t](#page-0-0) [t](#page-1-1)[ra](#page-76-0)[ns](#page-0-0)[for](#page-76-0)m. つひひ

E. Sawyer (McMaster University) [Two weight theorems](#page-0-0) May 23, 2013 16 / 43

Theorem (Sawyer, Shen and Uriarte-Tuero)

Suppose that T^{α} is a standard α-fractional Calderón-Zygmund operator on **R**ⁿ, and that $ω$ and $σ$ are positive Borel measures on \mathbb{R}^n without common point masses. Set $T_{\sigma}^{\alpha}f=T^{\alpha}\left(f\sigma\right)$ for any smooth truncation of T_{σ}^{α} . $Suppose 0 \leq \alpha < n$. Then the operator T^{α}_{σ} is bounded from $L^2(\sigma)$ to $L^2(\omega)$, i.e.

$$
\|T_{\sigma}^{\alpha}f\|_{L^{2}(\omega)}\leq \mathfrak{N}^{\alpha}\left\|f\right\|_{L^{2}(\sigma)}.
$$
\n(3)

uniformly in smooth truncations of T*^α* , and moreover

$$
\mathfrak{N}_\alpha \leq \, C_\alpha \left(\sqrt{ \mathcal{A}^{\alpha}_2 + \mathcal{A}^{\alpha,*}_2 } + \mathfrak{T}_\alpha + \mathfrak{T}^*_\alpha + \mathcal{E}_\alpha + \mathcal{E}^*_\alpha \right).
$$

provided that the following three conditions hold:

A2 and Testing conditions

The two dual \mathcal{A}_2^{α} conditions hold,

$$
\mathcal{A}_{2}^{\alpha} \equiv \sup_{Q \in \mathcal{Q}^{n}} \mathcal{P}^{\alpha}(Q, \sigma) \frac{|Q|_{\omega}}{|Q|^{1-\frac{\alpha}{n}}} < \infty,
$$

$$
\mathcal{A}_{2}^{\alpha,*} \equiv \sup_{Q \in \mathcal{Q}^{n}} \frac{|Q|_{\sigma}}{|Q|^{1-\frac{\alpha}{n}}} \mathcal{P}^{\alpha}(Q, \omega) < \infty,
$$

э

K ロ ▶ | K 伺 ▶ | K 급

 299

A2 and Testing conditions

The two dual ${\cal A}_2^{\alpha}$ conditions hold,

$$
\mathcal{A}_{2}^{\alpha} \equiv \sup_{Q \in \mathcal{Q}^{n}} \mathcal{P}^{\alpha}(Q, \sigma) \frac{|Q|_{\omega}}{|Q|^{1-\frac{\alpha}{n}}} < \infty,
$$

$$
\mathcal{A}_{2}^{\alpha,*} \equiv \sup_{Q \in \mathcal{Q}^{n}} \frac{|Q|_{\sigma}}{|Q|^{1-\frac{\alpha}{n}}} \mathcal{P}^{\alpha}(Q, \omega) < \infty,
$$

• and the two dual testing conditions hold,

$$
\mathfrak{T}_{\alpha}^{2} \equiv \sup_{Q \in \mathcal{Q}^{n}} \frac{1}{|Q|_{\sigma}} \int_{Q} \left| T^{\alpha} \left(\mathbf{1}_{Q} \sigma \right) \right|^{2} \omega < \infty,
$$
\n
$$
\left(\mathfrak{T}_{\alpha}^{*} \right)^{2} \equiv \sup_{Q \in \mathcal{Q}^{n}} \frac{1}{|Q|_{\omega}} \int_{Q} \left| \left(T^{\alpha} \right)^{*} \left(\mathbf{1}_{Q} \omega \right) \right|^{2} \sigma < \infty,
$$

(□) (_□) (

 299

and the two dual energy conditions hold,

$$
\begin{array}{rcl} & \displaystyle (\mathcal{E}_{\alpha})^{2} & \equiv & \displaystyle \sup_{\substack{Q = \dot{\cup} Q_{r} \\ Q, Q_{r} \in \mathcal{Q}^{n}}} \frac{1}{|Q|_{\sigma}} \sum_{r=1}^{\infty} \left(\frac{P^{\alpha} \left(Q_{r}, \mathbf{1}_{Q \setminus Q_{r}} \sigma \right)}{|Q_{r}|} \right)^{2} \left\| \widetilde{P}^{\omega}_{Q_{r}} \mathbf{x} \right\|_{L^{2}(\omega)}^{2} < \infty, \\ & & \\ \displaystyle (\mathcal{E}_{\alpha}^{*})^{2} & \equiv & \displaystyle \sup_{\substack{Q = \dot{\cup} Q_{r} \\ Q, Q_{r} \in \mathcal{Q}^{n}}} \frac{1}{|Q|_{\omega}} \sum_{r=1}^{\infty} \left(\frac{P^{\alpha} \left(Q_{r}, \mathbf{1}_{Q \setminus Q_{r}} \omega \right)}{|Q_{r}|} \right)^{2} \left\| \widetilde{P}^{\sigma}_{Q_{r}} \mathbf{x} \right\|_{L^{2}(\sigma)}^{2} < \infty, \end{array}
$$

where the goodness parameters r and ε implicit in the definition of \tilde{P} are fixed sufficiently large and small respectively depending on dimension, and the two inequalities hold uniformly over all dyadic grids. The differing Poisson kernels are defined below

Necessity of A2

Conversely, suppose $0 \leq \alpha < n$ and that $\Big\{ \, {\mathcal T}_j^\alpha$ ι' $_{j=1}$ is a collection of Calder ón-Zygmund operators with standard kernels $\left\{\mathsf{K}_{\!j}^{\alpha}\right\}$ \mathfrak{d}^J $_{j=1}$. In the range $0 \le \alpha < \frac{n}{2}$, we assume there is $c > 0$ such that for *each* unit vector \bf{u} there is \bf{j} satisfying

$$
\left|K_j^{\alpha}(x, x + t\mathbf{u})\right| \ge ct^{\alpha - n}, \qquad t \in \mathbb{R}.
$$
 (4)

Necessity of A2

Conversely, suppose $0 \leq \alpha < n$ and that $\Big\{ \, {\mathcal T}_j^\alpha$ ι $_{j=1}$ is a collection of Calderón-Zygmund operators with standard kernels $\left\{\mathsf{K}_{\mathsf{j}}^{\alpha}\right\}$ ι $_{j=1}$. In the range $0 \le \alpha < \frac{n}{2}$, we assume there is $c > 0$ such that for *each* unit vector \bf{u} there is *j* satisfying

$$
\left|K_j^{\alpha}(x, x + t\mathbf{u})\right| \ge ct^{\alpha - n}, \qquad t \in \mathbb{R}.
$$
 (4)

For the range $\frac{n}{2} \leq \alpha < n$, we asume that for each $m \in \{1, -1\}^n$, there is a sequence of coefficients $\left\{ \lambda^m_j \right\}_{j=1}^J$ such that

$$
\left|\sum_{j=1}^{J} \lambda_j^m K_j^{\alpha} (x, x + t\mathbf{u})\right| \geq ct^{\alpha - n}, \qquad t \in \mathbb{R}.
$$
 (5)

holds for all unit vectors **u** in the *n*-ant

$$
V_m = \{x \in \mathbb{R}^n : m_i x_i > 0 \text{ for } 1 \leq i \leq n\}, \quad m \in \{1, -1\}^n.
$$

Furthermore, assume that each operator \mathcal{T}^α_j is bounded from $\mathcal{L}^2\left(\sigma\right)$ to $L^2(\omega)$, $\Vert T_{\sigma}^{\alpha} f \Vert_{L^2(\omega)} \leq \mathfrak{N}_{\alpha} \Vert f \Vert_{L^2(\sigma)}.$

4 0 8
Furthermore, assume that each operator \mathcal{T}^α_j is bounded from $\mathcal{L}^2\left(\sigma\right)$ to $L^2(\omega)$,

$$
\|T_{\sigma}^{\alpha}f\|_{L^2(\omega)}\leq \mathfrak{N}_{\alpha}\,\|f\|_{L^2(\sigma)}\,.
$$

Then the fractional \mathcal{A}_2^{α} condition holds, and moreover,

$$
\sqrt{\mathcal{A}_2^\alpha+\mathcal{A}_2^{\alpha,*}}\leq\,C\mathfrak{N}_\alpha.
$$

4 0 8

Necessity of energy

Conversely, suppose $\mathbf{n} = 2$ and $0 \leq \alpha < 2$, and that the \mathcal{A}_2^{α} condition holds, $A_2^{\alpha} < \infty$, and that the dual cube testing conditions for an α -fractional admissible local transform vector T^α_{M} hold,

$$
\mathfrak{T}^2_{\mathsf{T}^{\alpha}_{M}} = \sup_{Q \in \mathcal{Q}^n} \frac{1}{|Q|_{\sigma}} \int_Q |\mathsf{T}^{\alpha}_{M} (\mathbf{1}_{Q} \sigma)|^2 \, \omega < \infty,
$$
\n
$$
\left(\mathfrak{T}^*_{\mathsf{T}^{\alpha}_{M}}\right)^2 = \sup_{Q \in \mathcal{Q}^n} \frac{1}{|Q|_{\omega}} \int_Q |\mathsf{T}^{\alpha}_{M} (\mathbf{1}_{Q} \omega)|^2 \, \sigma < \infty.
$$

4 0 8

Necessity of energy

Conversely, suppose $\mathbf{n} = \mathbf{2}$ and $0 \leq \alpha < 2$, and that the \mathcal{A}_2^{α} condition holds, $\mathcal{A}_2^{\alpha}<\infty$, and that the dual cube testing conditions for an α -fractional admissible local transform vector \textsf{T}^α_{M} hold,

$$
\mathfrak{T}^2_{\mathsf{T}^{\alpha}_{M}} = \sup_{Q \in \mathcal{Q}^n} \frac{1}{|Q|_{\sigma}} \int_Q |\mathsf{T}^{\alpha}_{M} (\mathbf{1}_{Q} \sigma)|^2 \, \omega < \infty, \\
\left(\mathfrak{T}^*_{\mathsf{T}^{\alpha}_{M}}\right)^2 = \sup_{Q \in \mathcal{Q}^n} \frac{1}{|Q|_{\omega}} \int_Q |\mathsf{T}^{\alpha}_{M} (\mathbf{1}_{Q} \omega)|^2 \, \sigma < \infty.
$$

• Then, provided the goodness parameters r and ε are fixed sufficiently large and small respectively depending on dimension, the two dual energy conditions hold, and moreover,

$$
\mathcal{E}_{\alpha}+\mathcal{E}_{\alpha}^*\leq \textit{C}\left(\sqrt{\mathcal{A}_2^{\alpha}+\mathcal{A}_2^{\alpha,*}}+\mathfrak{T}_{\textbf{T}_\mathcal{M}^{\alpha}}+\mathfrak{T}_{\textbf{T}_\mathcal{M}^{\alpha}}^*\right).
$$

つひひ

We have the following generalization of the NTV conjecture to fractional admissible local vector transforms in dimension $n = 2$ with $0 \le \alpha \le 1$.

Corollary

Suppose $n = 2$ and $0 \le \alpha \le 1$. An α -fractional admissible local vector transform $\mathbf{T}^{\alpha}_{M}=\left(T^{\alpha}_{1},...,T^{\alpha}_{2^{M}}\right)$ is bounded from $L^{2}\left(\sigma\right)$ to $L^{2}\left(\omega\right)$ if and only if the fractional \mathcal{A}^{α}_{2} condition holds, i.e. $\mathcal{A}^{\alpha}_{2} < \infty$, and the dual cube testing conditions for the fractional admissible local transform vector T^α_M hold, i.e. $\mathfrak{T}_{\mathsf{T}_M^{\alpha}} + \mathfrak{T}_{\mathsf{T}_M^{\alpha}}^* < \infty$.

つへへ

- Define the rough teepee function $\Lambda_{K, rough}$ associated with an interval or arc K in the circle \mathbb{S}^1 as the unique function satisfying the three properties that $\Lambda_{K, rough}$
- \bullet vanish outside K.
- take the value 1 at the center of K ,
- and be affine on both of the children K_+ of K.

つひひ

- Define the rough teepee function $\Lambda_{K, rough}$ associated with an interval or arc K in the circle \mathbb{S}^1 as the unique function satisfying the three properties that $\Lambda_{K,rouch}$
- \bullet vanish outside K.
- take the value 1 at the center of K ,
- and be affine on both of the children K_+ of K.
- Then a smooth teepee function Λ_K on K is a smooth function on the circle supported in K and such that

$$
\sup_{\theta \in S^1} |\Lambda_K(\theta) - \Lambda_{K, rough}(\theta)| < \varepsilon(|K|),
$$

where ϵ ($|K|$) is a sufficiently small number depending on the length $|K|$ of the interval K.

Admissible local transforms continued

Given a large positive integer m, let $I = \left[-\frac{2\pi}{2^m}, \frac{2\pi}{2^m}\right)$ and set Ω to be $\Lambda_I - \Lambda_{I+\pi}$, where Λ_I is a smooth teepee function on I and $\Lambda_{I+\pi}(\theta) = \Lambda_I(\theta+\pi)$ is the rotation of Λ_I by angle π .

Admissible local transforms continued

- Given a large positive integer m , let $I=\left[-\frac{2\pi}{2^m},\frac{2\pi}{2^m}\right)$ and set Ω to be $\Lambda_I - \Lambda_{I+\pi}$, where Λ_I is a smooth teepee function on I and $\Lambda_{I+\pi}(\theta) = \Lambda_I(\theta + \pi)$ is the rotation of Λ_I by angle π .
- Then with $M > m$ sufficiently large, we say that the collection of rotated functions

$$
\left\{ \Omega_{\ell} \right\}_{\ell=1}^{2^M}; \qquad \Omega_{\ell} \left(\theta \right) = \Omega \left(\theta - \frac{2 \pi \ell}{2^M} \right),
$$

and the corresponding vector of odd convolution *α*-fractional singular integrals,

$$
\mathbf{T}_{M}^{\alpha} \equiv \{T_{\ell}^{\alpha}\}_{\ell=1}^{2^{M}}; \qquad T_{\ell}^{\alpha}(x) = \frac{\Omega_{\ell}(x)}{|x|^{2-\alpha}},
$$

is admissible provided $m < M$ are taken large enough and $\epsilon(|K|) > 0$ is taken small enough.

K □ ▶ K @ ▶ K ミ ▶ K ミ

 200

Poisson integrals

• In higher dimensions, there are two natural 'Poisson integrals' P and $\mathcal P$ that arise, the usual Poisson integral P that emerges in connection with energy considerations, and a much smaller 'reproducing' Poisson integral $\mathcal P$ that emerges in connection with size considerations - in dimension $n = 1$ these two Poisson integrals coincide. For $0 \le \alpha < n$, any cube Q and any positive Borel measure *µ*, let

$$
P^{\alpha} (Q, \mu) \equiv \int_{\mathbb{R}^n} \frac{|Q|^{\frac{1}{n}}}{\left(|Q|^{\frac{1}{n}} + |x - x_Q|\right)^{n+1-\alpha}} d\mu(x),
$$

$$
\mathcal{P}^{\alpha} (Q, \mu) \equiv \int_{\mathbb{R}^n} \left(\frac{|Q|^{\frac{1}{n}}}{\left(|Q|^{\frac{1}{n}} + |x - x_Q|\right)^2}\right)^{n-\alpha} d\mu(x).
$$

4 D F

Note that

- for $0 \leq \alpha < n-1$, P^{α} is strictly larger that \mathcal{P}^{α} ,
- for $\alpha = n 1$, P^{α} and P^{α} coincide,
- for $n-1 < \alpha < n$, P^{α} is strictly smaller that \mathcal{P}^{α} .

4.0.3

- Note that
- for $0 \leq \alpha < n-1$, P^{α} is strictly larger that \mathcal{P}^{α} ,
- for $\alpha = n 1$, P^{α} and P^{α} coincide,
- for $n-1 < \alpha < n$, P^{α} is strictly smaller that \mathcal{P}^{α} .
- The standard Poisson integral P^{α} appears in the energy conditions, while the reproducing Poisson kernel \mathcal{P}^{α} appears in the \mathcal{A}_{2}^{α} conditions.

The good dyadic grids of NTV in dimension one

For any $\beta = \{\beta_l\} \in \{0, 1\}^{\mathbb{Z}}$, define the dyadic grid \mathbb{D}_{β} to be the collection of intervals

$$
\mathbb{D}_{\beta} = \left\{ 2^n \left([0,1) + k + \sum_{i < n} 2^{i-n} \beta_i \right) \right\}_{n \in \mathbb{Z}, k \in \mathbb{Z}}
$$

and place the usual uniform probability measure **P** on the space ${0,1}^{\mathbb{Z}}.$

The good dyadic grids of NTV in dimension one

For any $\beta = \{\beta_l\} \in \{0,1\}^{\mathbb{Z}}$, define the dyadic grid \mathbb{D}_{β} to be the collection of intervals

$$
\mathbb{D}_{\beta} = \left\{ 2^n \left([0,1) + k + \sum_{i < n} 2^{i-n} \beta_i \right) \right\}_{n \in \mathbb{Z}, k \in \mathbb{Z}}
$$

and place the usual uniform probability measure **P** on the space ${0,1}^{\mathbb{Z}}.$

For weights *^ω* and *^σ*, consider random choices of dyadic grids D*^ω* and \mathcal{D}^{σ} . Fix $\varepsilon > 0$ and for a positive integer r, an interval $J \in \mathcal{D}^{\omega}$ is said to be *r-bad* if there is an interval $I \in \mathcal{D}^{\sigma}$ with $|I| \geq 2^r |J|$, and

$$
\mathrm{dist}(e(I), J) \leq \frac{1}{2}|J|^{\varepsilon}|I|^{1-\varepsilon}.
$$

where $e(I)$ is the set of the three discontinuities of h^{σ}_{I} . Otherwise, J is said to be r -good.

 200

The good dyadic grids of NTV in dimension one

For any $\beta = \{\beta_l\} \in \{0,1\}^{\mathbb{Z}}$, define the dyadic grid \mathbb{D}_{β} to be the collection of intervals

$$
\mathbb{D}_{\beta} = \left\{ 2^n \left([0,1) + k + \sum_{i < n} 2^{i-n} \beta_i \right) \right\}_{n \in \mathbb{Z}, k \in \mathbb{Z}}
$$

and place the usual uniform probability measure **P** on the space ${0,1}^{\mathbb{Z}}.$

For weights *^ω* and *^σ*, consider random choices of dyadic grids D*^ω* and \mathcal{D}^{σ} . Fix $\varepsilon > 0$ and for a positive integer r, an interval $J \in \mathcal{D}^{\omega}$ is said to be *r-bad* if there is an interval $I \in \mathcal{D}^{\sigma}$ with $|I| \geq 2^r|J|$, and

$$
\mathrm{dist}(e(I), J) \leq \frac{1}{2}|J|^{\varepsilon}|I|^{1-\varepsilon}.
$$

where $e(I)$ is the set of the three discontinuities of h^{σ}_{I} . Otherwise, J is said to be r-good.

We have

$$
\mathbb{P}\left(J \text{ is } r\text{-bad}\right) \leq C2^{-\varepsilon r}.
$$

つへへ

Energy conditions

Define P_I^{μ} to be orthogonal projection onto the subspace of $L^2(\mu)$ consisting of functions supported in I with *µ*-mean value zero.

4 0 8

Energy conditions

- Define P^{μ}_{I} to be orthogonal projection onto the subspace of $L^{2}(\mu)$ consisting of functions supported in I with *µ*-mean value zero.
- In addition, define \widetilde{P}_I^{μ} to be orthogonal projection onto the subspace $L²_{H(I)}(\mu)$ of $L²(\mu)$ consisting of those functions $f \in L²(\mu)$ whose Haar support is contained in

$$
\mathcal{H}(I) \equiv \left\{ J \in \mathcal{D}^n : \text{either } J \subset I \text{ and } |J|^{\frac{1}{n}} > 2^{-r} |I|^{\frac{1}{n}} \text{ or } J \Subset I \right\},\
$$

and where the notation $J \subseteq I$, read J is deeply embedded in I, means that $J\subset I,~\left|J\right|^{\frac{1}{n}}\leq2^{-r}\left|I\right|^{\frac{1}{n}}$, and that J satisfies the 'good' condition relative to the cube I:

$$
\operatorname{dist}(J,\partial I) > \frac{1}{2} |J|^{\frac{\varepsilon}{n}} |I|^{\frac{1-\varepsilon}{n}}.
$$

Energy conditions

- Define P^{μ}_{I} to be orthogonal projection onto the subspace of $L^{2}(\mu)$ consisting of functions supported in I with *µ*-mean value zero.
- In addition, define \widetilde{P}_{I}^{μ} to be orthogonal projection onto the subspace $L^2_{\mathcal{H}(I)}(\mu)$ of $L^2(\mu)$ consisting of those functions $f \in L^2(\mu)$ whose Haar support is contained in

$$
\mathcal{H}(I) \equiv \left\{ J \in \mathcal{D}^n : \text{either } J \subset I \text{ and } |J|^{\frac{1}{n}} > 2^{-r} |I|^{\frac{1}{n}} \text{ or } J \Subset I \right\},\
$$

and where the notation $J \subseteq I$, read J is deeply embedded in I, means that $J\subset I$, $\left|J\right|^{\frac{1}{n}}\leq2^{-r}\left|I\right|^{\frac{1}{n}}$, and that J satisfies the 'good' condition relative to the cube I:

$$
\mathrm{dist}\left(J,\partial I\right)>\frac{1}{2}\left|J\right|^{\frac{\varepsilon}{n}}\left|I\right|^{\frac{1-\varepsilon}{n}}
$$

.

 \bullet Here $r \in \mathbb{N}$ and $0 < \varepsilon < 1$ are the parameters in the definition of the 'good' dyadic grid below, and will be taken sufficiently large and small respectively depending on the dimension n. Ω

E. Sawyer (McMaster University) [Two weight theorems](#page-0-0) May 23, 2013 29 / 43

• In dimension $n = 1$ for $\alpha = 0$, we defined the energy condition by

$$
\sum_{l \supset U_l} |l_r|_{\omega} \mathsf{E} \left(l_r, \mu \right)^2 \mathsf{P}^{\alpha} \left(l_r, \mathbf{1}_l \sigma \right)^2 \leq (\mathcal{E}_2)^2 |l|_{\sigma},
$$

$$
\mathsf{E} \left(l, \mu \right)^2 \equiv \frac{1}{|l|_{\omega}} \left\| \mathsf{P}_l^{\mu} \frac{\mathbf{x}}{|l|} \right\|_{L^2(\mu)}^2.
$$

4 0 3 4

 QQ

• In dimension $n = 1$ for $\alpha = 0$, we defined the energy condition by

$$
\sum_{l \supset U_l} |l_r|_{\omega} \mathsf{E} \left(l_r, \mu \right)^2 \mathsf{P}^{\alpha} \left(l_r, \mathbf{1}_l \sigma \right)^2 \leq (\mathcal{E}_2)^2 |l|_{\sigma},
$$

$$
\mathsf{E} \left(l, \mu \right)^2 \equiv \frac{1}{|l|_{\omega}} \left\| \mathsf{P}_l^{\mu} \frac{\mathbf{x}}{|l|} \right\|_{L^2(\mu)}^2.
$$

• The extension of the *energy conditions* to higher dimensions will use the smaller projection \widetilde{P}^μ_I I_I^{μ} **x** in place of P_I^{μ} **x**, and as a result, it is convenient to define the *soft* energy of μ on a cube J by

$$
\mathsf{E}_{\mathsf{soft}}\left(I,\mu\right)^2 \equiv \frac{1}{|I|_{\omega}} \left\| \widetilde{\mathsf{P}}_I^{\mu} \frac{\mathbf{x}}{|I|^{\frac{1}{n}}}\right\|_{L^2(\mu)}^2.
$$

Thus $E_{soft} (I, \mu)$ includes precisely those Haar coefficients $\langle x, h_{J}^{\omega, a} \rangle_{\omega}$ for which J is either close to I or deeply embedded in I . In particular, $\mathsf{E}_{soft} (I, \mu)$ includes all of the Haar coefficients $\langle \mathbf{x}, h_J^{\omega, a} \rangle_\omega$ for which J is good and contained in *, plus others.*

- Thus E_{soft} (I, μ) includes precisely those Haar coefficients $\langle \mathbf{x}, h_{J}^{\omega,a} \rangle_{\omega}$ for which J is either close to I or deeply embedded in I. In particular, $\mathsf{E}_{soft} (I, \mu)$ includes all of the Haar coefficients $\langle \mathbf{x}, h_J^{\omega, a} \rangle_\omega$ for which J is good and contained in I, plus others.
- Then we define the forward energy condition in dimension $n \geq 2$ for $0 \leq \alpha \leq n$ by

$$
\sum_{I\supset\cup I_r}|I_r|_\omega\,\mathsf{E}_{soft}\,(I_r,\mu)^2\,\mathsf{P}^\alpha\,(I_r,\mathbf{1}_I\sigma)^2\leq(\mathcal{E}_2^\alpha)^2\,|I|_\sigma\,.
$$

Note that this definition of the energy condition depends on the choice of goodness parameters r and *ε*.

 200

F-adapted collections of intervals

Definition

Let $\mathcal F$ be a collection of dyadic cubes satisfying a Carleson condition

$$
\sum_{F \in \mathcal{F}: \ F \subset S} |F|_{\sigma} \leq C_{\mathcal{F}} |S|_{\sigma}, \qquad S \in \mathcal{F},
$$

where $C_{\mathcal{F}}$ is referred to as the Carleson norm of \mathcal{F} . A collection of functions $\{g_F\}_{F \in \mathcal{F}}$ in $L^2(w)$ is said to be \mathcal{F} -adapted if there are collections of cubes $\mathcal{J}(F) \subset \{J \in \mathcal{D}^{\sigma} : J \Subset F\}$, with $\mathcal{J}^*(F)$ consisting of the *maximal* dyadic cubes in $\mathcal{J}(F)$, such that the following three conditions hold:

つへへ

F-adapted conditions

Definition

1 for each $F \in \mathcal{F}$, the Haar coefficients $\widehat{g_F}(J) = \langle g_F, h_J^\omega \rangle_\omega$ of g_F are nonnegative and supported in $\mathcal{J}(F)$, i.e.

$$
\begin{cases}\n\widehat{g_F}(J) \ge 0 & \text{for all} \quad J \in \mathcal{J}(F) \\
\widehat{g_F}(J) = 0 & \text{for all} \quad J \notin \mathcal{J}(F)\n\end{cases}, \quad F \in \mathcal{F},
$$

the collection of sets of cubes $\{J(F)\}_{F\in\mathcal{F}}$ is pairwise disjoint,

3 and there is a positive constant C such that if $\mathcal{J}^*(F)$ consists of the maximal cubes in $\mathcal{J}(F)$, then for every cube I in \mathcal{D}^{σ} , the set of pairs of cubes (\digamma, J^*) that 'straddle' $I,$

$$
\mathcal{B}_I \equiv \{ (F, J^*) : J^* \in \mathcal{J}^* (F) \text{ and } J^* \subset I \subset F \},
$$

satisfies the overlap condition $\sum_{(\digamma,J^*)\in\mathcal{B}_I} \mathbf{1}_{J^*}\leq \mathcal{C}, \qquad I\in\mathcal{D}^\sigma$ $I \in \mathcal{D}^{\sigma}$.

∢ □ ▶ к 何 ▶ к ∃ ▶

• The functional energy condition is:

Definition

Let \tilde{x} be the smallest constant in the inequality below, holding for all non-negative $h \in L^2(\sigma)$, all σ -Carleson collections $\mathcal F$, and all $\mathcal F$ -adapted collections $\{g_F\}_{F \in \mathcal{F}}$:

$$
\sum_{F \in \mathcal{F}} \sum_{J^* \in \mathcal{J}^*(F)} P(J^*, h\sigma) \left| \left\langle \frac{x}{|J^*|}, g_F \mathbf{1}_{J^*} \right\rangle_{\omega} \right| \leq \mathfrak{F} \|h\|_{L^2(\sigma)} \left[\sum_{F \in \mathcal{F}} \|g_F\|_{L^2(\omega)}^2 \right]^{1/2} \tag{6}
$$

Here $\mathcal{J}^*(F)$ consists of the maximal intervals J in the collection $\mathcal{J}(F)$. (6)

つひひ

• The functional energy condition is:

Definition

Let $\tilde{\mathfrak{F}}$ be the smallest constant in the inequality below, holding for all non-negative $h \in L^2(\sigma)$, all σ -Carleson collections $\mathcal F$, and all $\mathcal F$ -adapted collections $\{g_F\}_{F \in \mathcal{F}}$:

$$
\sum_{F \in \mathcal{F}} \sum_{J^* \in \mathcal{J}^*(F)} \mathsf{P}(J^*, h\sigma) \left| \left\langle \frac{x}{|J^*|}, g_F \mathbf{1}_{J^*} \right\rangle_{\omega} \right| \leq \mathfrak{F} \|h\|_{L^2(\sigma)} \left[\sum_{F \in \mathcal{F}} \|g_F\|_{L^2(\omega)}^2 \right]^{1/2} \tag{6}
$$

Here $\mathcal{J}^*(F)$ consists of the maximal intervals J in the collection $\mathcal{J}(F)$.

The dual version of this condition has constant $\mathfrak{F}^*.$

.

つひひ

Now we show that the functional energy constants are equivalent to the energy constants modulo \mathcal{A}_2^{α} . First we use the two weight Poisson characterization to obtain

Lemma

$$
\mathfrak{F}_\alpha \lesssim \mathcal{E}_\alpha + \sqrt{\mathcal{A}_2^\alpha} \text{ and } \mathfrak{F}_\alpha^* \lesssim \mathcal{E}_\alpha^* + \sqrt{\mathcal{A}_2^{\alpha,*}} \ .
$$

Then we use an easy duality argument to show that

Lemma

$$
\mathcal{E}_{\alpha} \lesssim \mathfrak{F}_{\alpha}
$$
 and $\mathcal{E}_{\alpha}^{*} \lesssim \mathfrak{F}_{\alpha}^{*}$.

Necessity of the functional energy condition

The energy measure in the plane

 \bullet To prove the first lemma we fix $\mathcal F$ and set

$$
\mu \equiv \sum_{F \in \mathcal{F}} \sum_{J^* \in \mathcal{J}^*(F)} \left\| P_{F,J^*}^{\omega} \frac{x}{|J^*|} \right\|_{L^2(\omega)}^2 \cdot \delta_{(c(J^*),|J^*|)}, \tag{7}
$$

4 0 8

where the projections $\mathsf{P}^\omega_{\mathsf{F},J^*}$ onto Haar functions are defined by

$$
\mathsf{P}_{\mathsf{F},J^*}^{\omega} \equiv \sum_{J \subset J^* : \pi_{\mathsf{F}} J = \mathsf{F}} \Delta_J^{\omega}.
$$

Necessity of the functional energy condition

The energy measure in the plane

 \bullet To prove the first lemma we fix ${\mathcal F}$ and set

$$
\mu \equiv \sum_{F \in \mathcal{F}} \sum_{J^* \in \mathcal{J}^*(F)} \left\| P_{F,J^*}^{\omega} \frac{x}{|J^*|} \right\|_{L^2(\omega)}^2 \cdot \delta_{(c(J^*),|J^*|)} \,, \tag{7}
$$

where the projections $\mathsf{P}^\omega_{\mathsf{F},J^*}$ onto Haar functions are defined by

$$
\mathsf{P}_{\mathsf{F},J^*}^{\omega} \equiv \sum_{J \subset J^* : \pi_{\mathcal{F}} J = \mathsf{F}} \triangle_{J}^{\omega}.
$$

 \bullet Here δ_q denotes a Dirac unit mass at a point q in the upper half plane \mathbb{R}^2_+ . Note that we can replace x by $x - c$ for any choice of c we wish.

• We prove the two-weight inequality

$$
\|\mathbb{P}(f\sigma)\|_{L^2(\mathbb{R}^2_+, \mu)} \lesssim \|f\|_{L^2(\sigma)}\,,\tag{8}
$$

4 0 8

for all nonnegative f in $L^2\left(\sigma\right)$, noting that ${\cal F}$ and f are *not* related here.

• We prove the two-weight inequality

$$
\|\mathbb{P}(f\sigma)\|_{L^2(\mathbb{R}^2_+, \mu)} \lesssim \|f\|_{L^2(\sigma)}\,,\tag{8}
$$

for all nonnegative f in $L^2\left(\sigma\right)$, noting that ${\cal F}$ and f are *not* related here.

• Above, $\mathbb{P}(\cdot)$ denotes the Poisson extension to the upper half-plane, so that in particular

$$
\|\mathbb{P}(f\sigma)\|_{L^2(\mathbb{R}_+^2,\mu)}^2 = \sum_{F \in \mathcal{F}} \sum_{J^* \in \mathcal{J}^*(F)} \mathbb{P}\left(f\sigma\right)(c(J^*),|J^*|)^2 \left\|P_{F,J^*}^{\omega}\frac{x}{|J^*|}\right\|_{L^2(\omega)}^2
$$

and so [\(8\)](#page-64-0) implies [\(6\)](#page-59-0) by the Cauchy-Schwarz inequality.

By the two-weight inequality for the Poisson operator, inequality [\(8\)](#page-64-0) requires checking these two inequalities

$$
\int_{\mathbb{R}^2_+} \mathbb{P} \left(\mathbf{1}_l \sigma \right) (x, t)^2 d\mu \left(x, t \right) \equiv \left\| \mathbb{P} \left(\mathbf{1}_l \sigma \right) \right\|_{L^2(\widehat{I}, \mu)}^2 \lesssim \left(A_2 + \mathfrak{T}^2 \right) \sigma(I), \quad (9)
$$

$$
\int_{\mathbb{R}} [\mathbb{P}^*(t \mathbf{1}_{\widehat{I}} \mu)]^2 \sigma(dx) \lesssim \mathcal{A}_2 \int_{\widehat{I}} t^2 \mu(dx, dt), \tag{10}
$$

for all *dyadic* intervals $I \in \mathcal{D}$, where $I = I \times [0, |I|]$ is the box over I in the upper half-plane, and

$$
\mathbb{P}^*(t\mathbf{1}_{\widehat{I}}\mu)=\int_{\widehat{I}}\frac{t^2}{t^2+|x-y|^2}\mu(dy,dt).
$$

Checking the Poisson testing conditions

• The main technical lemma used in proving [\(9\)](#page-66-0) is this.

Lemma

We have

$$
\sum_{F \in \mathcal{F}_l} \sum_{J^* \in \mathcal{M}(F)} \left(\frac{\mathbf{P}^{\alpha} \left(J^*, \mathbf{1}_{I \setminus F} \sigma \right)}{\left| J^* \right|^{\frac{1}{n}}} \right)^2 \left\| \mathbf{P}_{F, J^*}^{\omega} \mathbf{X} \right\|_{L^2(\omega)}^2 \lesssim \mathcal{E}_{\alpha}^2 \sigma(I). \tag{11}
$$

4 0 8

 QQ

Checking the Poisson testing conditions

• The main technical lemma used in proving [\(9\)](#page-66-0) is this.

Lemma

We have

$$
\sum_{F \in \mathcal{F}_l} \sum_{J^* \in \mathcal{M}(F)} \left(\frac{P^{\alpha} \left(J^*, \mathbf{1}_{I \setminus F} \sigma \right)}{|J^*|^{\frac{1}{n}}} \right)^2 \left\| P_{F, J^*}^{\omega} x \right\|_{L^2(\omega)}^2 \lesssim \mathcal{E}_{\alpha}^2 \sigma(I). \tag{11}
$$

 \bullet The proof is by duality and uses that the collection ${\cal F}$ satisfies a Carleson condition, hence has geometric decay in generations:

$$
\sum_{F \in \mathcal{F}_l: d(F)=k} |F|_{\sigma} \lesssim 2^{-\delta k} |I|_{\sigma}, \qquad k \ge 0,
$$

which permits summing up energy condition estimates over generations.

E. Sawyer (McMaster University) [Two weight theorems](#page-0-0) May 23, 2013 39 / 43

Reverse energy inequality

Lemma (Local Reverse Energy)

Suppose that I and J are squares in \mathbb{R}^2 such that $\gamma J \subset I$, and that μ is a positive measure on \mathbb{R}^2 supported outside I .Suppose that $\set{T^{\alpha}_{\ell}}_{\ell=1}^{2^m}$ $\epsilon_{=1}^2$ is as above with $0 < \alpha < 2$. Then for $\gamma > 1$ sufficiently large, and $\eta = \frac{2\pi}{2^m}$ sufficiently small, and $M > m$ sufficiently large, and $\epsilon(|K|) = \epsilon(2\eta)$ sufficiently small, we have the estimate

$$
\mathsf{E} \left(J, \omega \right)^2 \mathsf{P}^{\alpha} \left(J, \mu \right)^2 \lesssim C_{\eta, \gamma} \mathbb{E}^{d\omega(x)} J \mathbb{E}^{d\omega(z)} J \left| \mathbf{T}_{M}^{\alpha} \mu \left(x \right) - \mathbf{T}_{M}^{\alpha} \mu \left(z \right) \right|^2,
$$

where

$$
P^{\alpha} (J, \mu) \approx \int \frac{|J|^{\frac{1}{n}}}{|y - c_J|^{n+1-\alpha}} d\mu (y),
$$

$$
c_J = (c_J^1, ..., c_J^n) \text{ is the center of } J.
$$

Necessity of weak energy

For $0 \leq \alpha < 1$ we have $\mathcal{E}_{\alpha}^{weak} \lesssim \mathfrak{T}_{\mathsf{T}_\mathcal{M}^\alpha}$. Indeed, using local reverse energy with $\mu = \mathbf{1}_{I \setminus J_r^{**}}\sigma$, we 'plug the hole' in $I \setminus J_r^{**}$ to obtain

$$
\sum_{r=1}^{\infty} \sum_{J_r^* \in \mathcal{M}(I_r)} \left(\frac{P^{\alpha} \left(J_r^{**}, \mathbf{1}_{I \setminus J_r^{**}} \sigma \right)}{|J_r^{**}|^{\frac{1}{n}}} \right)^2 \left\| P_{J_r^*}^{\omega} \mathbf{x} \right\|_{L^2(\omega)}^2
$$
\n
$$
\lesssim \sum_{r=1}^{\infty} \sum_{J_r^* \in \mathcal{M}(I_r)} \int_{J_r^*} \left| \mathbf{T}_M^{\alpha} \mathbf{1}_{I \setminus J_r^{**}} \sigma \right|^2 d\omega
$$
\n
$$
\lesssim \sum_{r=1}^{\infty} \sum_{J_r^* \in \mathcal{M}(I_r)} \int_{J_r^*} \left| \mathbf{T}_M^{\alpha} \mathbf{1}_{I} \sigma \right|^2 d\omega + \sum_{r=1}^{\infty} \sum_{J_r^* \in \mathcal{M}(I_r)} \int_{J_r^*} \left| \mathbf{T}_M^{\alpha} \mathbf{1}_{J_r^{**}} \sigma \right|^2 d\omega
$$
\n
$$
\lesssim \int_I \left| \mathbf{T}_M^{\alpha} \mathbf{1}_{I} \sigma \right|^2 d\omega + \sum_{r=1}^{\infty} \sum_{J_r^* \in \mathcal{M}(I_r)} \int_{J_r^{**}} \left| \mathbf{T}_M^{\alpha} \mathbf{1}_{J_r^{**}} \sigma \right|^2 d\omega
$$
\n
$$
\lesssim \mathbf{T}_{\mathbf{T}_M^{\alpha}} |I|_{\sigma} + \sum_{r=1}^{\infty} \sum_{J_r^* \in \mathcal{M}(I_r)} \mathbf{T}_{\mathbf{T}_M^{\alpha}} |J_r^{**}|_{\sigma} \lesssim \mathbf{T}_{\mathbf{T}_M^{\alpha}} |I|_{\sigma} ,
$$

For $0\leq \alpha < 1$ we have the energy condition $\mathcal{E}_\alpha\lesssim \mathfrak{T}_{\mathsf{T}_M^\alpha}+\sqrt{A_2^\alpha}.$ Indeed,

$$
\begin{array}{lll}\n\frac{1}{|I|_{\sigma}}\sum\limits_{r=1}^{\infty}\left(\frac{\mathrm{P}^{\alpha}\left(I_{r},\mathbf{1}_{I}\sigma\right)}{|I_{r}|^{\frac{1}{n}}}\right)^{2}\sum\limits_{J\in\mathcal{H}(I_{r})}\widehat{X}^{\omega}\left(J\right)^{2} \\
&\lesssim &\frac{1}{|I|_{\sigma}}\sum\limits_{r=1}^{\infty}\left(\frac{\mathrm{P}^{\alpha}\left(I_{r},\mathbf{1}_{I\setminus I_{r}}\sigma\right)}{|I_{r}|^{\frac{1}{n}}}\right)^{2}\sum\limits_{J\in\mathcal{H}(I_{r})}\widehat{X}^{\omega}\left(J\right)^{2}+OK \\
&\lesssim &\frac{1}{|I|_{\sigma}}\sum\limits_{r=1}^{\infty}\sum\limits_{J^{*}\in\mathcal{M}(I_{r})}\left(\frac{\mathrm{P}^{\alpha}\left(J^{*},\mathbf{1}_{I\setminus I_{r}}\sigma\right)}{|J^{*}|^{\frac{1}{n}}}\right)^{2}\left(\sum\limits_{J\subset J^{*}}\widehat{X}^{\omega}\left(J\right)^{2}\right)+OK \\
&\lesssim &\left(\mathcal{E}_{\alpha}^{weak}\right)^{2}+A_{2}^{\alpha}\lesssim\left(\mathfrak{T}_{\mathsf{T}_{M}^{\alpha}}\right)^{2}+A_{2}^{\alpha}.\n\end{array}
$$

4 D F

 QQQ
1 Is the energy condition necessary for boundedness of the Riesz transform vector?

4 ロト 4 旬

 \sim

 QQQ

- **1** Is the energy condition necessary for boundedness of the Riesz transform vector?
- \bullet Is the A_2^{α} condition necessary for boundedness of elliptic vector transforms when $\frac{n}{2} \le \alpha < n$?

4 0 8

 Ω

- **1** Is the energy condition necessary for boundedness of the Riesz transform vector?
- \bullet Is the A_2^{α} condition necessary for boundedness of elliptic vector transforms when $\frac{n}{2} \leq \alpha < n$?
- **3** What should play the roles of the Poisson kernels P^{α} and P^{α} , and the A_2^{α} condition and energy condition \mathcal{E}_{α} , for the boundedness of a single operator T, such as an individual Riesz transform R_i ?

 Ω

- **1** Is the energy condition necessary for boundedness of the Riesz transform vector?
- \bullet Is the A_2^{α} condition necessary for boundedness of elliptic vector transforms when $\frac{n}{2} \leq \alpha < n$?
- **3** What should play the roles of the Poisson kernels P^{α} and P^{α} , and the A_2^{α} condition and energy condition \mathcal{E}_{α} , for the boundedness of a single operator T, such as an individual Riesz transform R_i ?
- ⁴ What is the free two weight norm inequality?

 200

- **1** Is the energy condition necessary for boundedness of the Riesz transform vector?
- \bullet Is the A_2^{α} condition necessary for boundedness of elliptic vector transforms when $\frac{n}{2} \leq \alpha < n$?
- **3** What should play the roles of the Poisson kernels P^{α} and P^{α} , and the A_2^{α} condition and energy condition \mathcal{E}_{α} , for the boundedness of a single operator T, such as an individual Riesz transform R_i ?
- ⁴ What is the free two weight norm inequality?
	- THANKS to the organizers for a wonderful conference!

 200