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Introduction

H complex, separable Hilbert space, dimH = ℵ0.
L(H) bounded, linear operators on H.
T ∈ L(H), ||T || ≤ 1

T = T1 ⊕ T2

T1 is c.n.u.: 6 ∃ M ∈ LatT1: T1|M is unitary
T2 is unitary
T is absolutely continuous if T2 is a.c.,
i.e. if the spectral measure of T2 is a.c. with respect to
Lebesgue measure
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Unitary dilation

T ∈ L(H) a.c. contraction

Minimal unitary dilation U ∈ L (G) of T:
(i) H ⊂ G,

∨∞
n=−∞UnH = G,

(ii) T n = PHUn|H ∀n ∈ Z+.

U a.c. unitary operator

∃! ΦU : L∞ → L (G) , f 7→ f (U) weak-* continuous, contractive,
unital algebra-homomorphism, such that χ(U) = U
(where χ(ζ) = ζ ∀ζ ∈ T)
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Hardy space H∞

H∞ =
{

f ∈ L∞ : f̂ (−n) =
∫

T fχn dµ = 0 ∀n ∈ N
}

Hardy space, weak-*-closed subalgebra of L∞

f ∈ H∞ =⇒ F (z) =
∫

T
1−|z|2
|1−ζz|2 f (ζ)dµ(ζ) (z ∈ D)

bounded analytic function on D.

F : D→ C bounded analytic =⇒ f ∈ H∞, where
f (ζ) = limr→1− F (rζ) for a.e. ζ ∈ T.

f ≡ F
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Functional calculus

φT : H∞ → L(H), f 7→ f (T ) := PHf (U)|H
weak-* continuous
contractive: ||f (T )|| ≤ ||f ||∞
unital algebra-homomorphism
χ(T ) = T

Uniquely determined:

Sz.-Nagy–Foias functional calculus for T .
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Classes of contractions, stability

Definition
T ∈ C0, if ker ΦT 6= {0}

Then ∃! mT ∈ H∞ inner function, such that ker ΦT = mT H∞.
mT minimal function of T .

Example.
ϑ ∈ H∞ inner: |ϑ(ζ)| = 1 for a.e. ζ ∈ T
H2 =

{
f ∈ L2 : f̂ (−n) = 0 ∀n ∈ N

}
- analytic subspace of L2(µ)

H(ϑ) = H2 	 ϑH2

S(ϑ) ∈ L(H(ϑ)), S(ϑ)f = PH(ϑ)(χf )

S(ϑ) ∈ C0 and mS(ϑ) = ϑ
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Classes of contractions, stability

T ∈ C0· : T n → 0 (SOT), that is T nx → 0 ∀x ∈ H

T ∈ C1· : T nx 6→ 0 for every x ∈ H

Dritschel: hn(T )→ 0 (SOT) ??? T n → 0 (SOT)
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Test sequences of stability

Definition
A sequence of bounded analytic functions {hn}∞n=1 ⊂ H∞ is a
test sequence of stability for a.c. contractions if for every a.c.
contraction T the condition T n → 0 (SOT) holds exactly when
hn(T )→ 0 (SOT).

Theorem (2012 Kérchy, Sz.)
A sequence of bounded analytic functions {hn}∞n=1 ⊂ H∞ is a
test sequence of stability for a.c. contractions if and only if

(i) limn→∞ hn(z) = 0 for all z ∈ D,

(ii) sup {||hn||∞ : n ∈ N} <∞,

(iii) lim supn→∞ ||χαhn||2 > 0 for every Borel set α ⊂ T of
positive measure.
(χα is the characteristic function of α.)
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Test sequences of stability

The conditions (i) and (ii) together mean that {hn}∞n=1
converges to zero in the weak-∗ topology.
Examples:

hn = un, where u is a non-constant inner.
hn = χn+1 − χn.

T ∈ C0 =⇒ ∃ϑ inner,
ϑ(T ) = 0 =⇒ ϑn(T ) = 0 → 0 (SOT ) =⇒ T ∈ C0·
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Proof⇒

Let us consider the unilateral shift of multiplicity one:
S ∈ L

(
H2) , Sf = χf , (χ(z) = z).

S∗n → 0 (SOT) ⇒ hn (S∗)→ 0 (SOT)

For the Cauchy kernel kλ(z) = 1
1−λz

:

S∗kλ = λkλ ⇒ hn(S∗)kλ = hn(λ)kλ ⇒ hn(λ)→ 0 ∀ λ ∈ D,

that is (i) holds.

||h||∞ ≥ ||h(S∗)|| ≥ ||h(S∗)kλ||2
||kλ||2

= |h(λ)|

for all λ ∈ D. Thus the Banach–Steinhaus theorem shows that
supn ||hn||∞ = supn ||hn(S∗)|| <∞, that is (ii) holds.
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Proof⇒

Let α ⊂ T, m(α) > 0, L2(α) = χαL2(T).
Then Mα ∈ L

(
L2(α)

)
, Mαg = χg is an a.c. unitary operator,

hence
Mn
α 6→ 0 (SOT) ⇒ hn(Mα) 6→ 0 (SOT) .
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Proof⇐

T ∈ C0· ⇒ T ∼= S∗∞|M (Rota, Foias).
(S∗∞ = S∗ ⊕ S∗ ⊕ . . .).

hn(S∗)kλ = hn(λ)kλ → 0 for all λ ∈ D by (i),
∨{kλ : λ ∈ D} = H2,
{hn(S∗)}∞n=1 is bounded by (ii).

⇒ hn(S∗)→ 0, hn(S∗∞)→ 0 and hn(T )→ 0 (SOT).
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Proof⇐

T /∈ C0· can be written in the form

T =

[
T0 ∗
0 T1

]
∈ L(H) = L(H0 ⊕H1)

where H1 6= {0}, T0 ∈ C0·, T1 ∈ C1·. Therefore

h(T ) =

[
h(T0) ∗

0 h(T1)

]
for all h ∈ H∞. Assume to the contrary that hn(T )→ 0 (SOT).
This implies that hn(T1)→ 0 (SOT). This leads to a
contradiction via the concept unitary asymptote.
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Further results

Proposition
Let {hn}∞n=1 ⊂ H∞. Then hn(T )→ 0 (SOT) for all T ∈ C0· if and
only if {hn}∞n=1 satisfies the conditions (i) and (ii).

Proposition

Let {hn}∞n=1 ⊂ H∞. Then hn(T )→ 0 (SOT) for every a.c.
contraction T exactly when {hn}∞n=1 is a bounded sequence and
limn→∞ ||hn||2 = 0.
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Polynomially bounded operators

T ∈ L(H) is polynomially bounded if ||p(T )|| ≤ KT ||p||∞.
ΦT ,0 : P(T)→ L(H), p 7→ p(T ) is a bounded
algebra-homomorphism which extends continuously to the
disc algebra:
ΦT ,1 : A→ L(H), f 7→ f (T ).

Mlak introduced and studied elementary measures of
polynomially bounded operators . If T is a polynomially
bounded operator then uniquely exist
Ha,Hs ∈ Hlat T ,H = Ha uHs such that Ta = T |Ha is
absolutely continuous and Ts = T |Hs is singular.

T admits an H∞-functional calculus exactly when T is a.c.
polynomially bounded operator.
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Characterization

Definition
A sequence of bounded analytic functions {hn}∞n=1 ⊂ H∞ is a
test sequence of stability for a.c. polynomially bounded
operators if for every a.c. polynomially bounded operator
T ∈ L(H) the property T n → 0 (SOT) holds exactly when
hn(T )→ 0 (SOT).

Theorem
A sequence of bounded analytic functions {hn}∞n=1 ⊂ H∞ is a
test sequence of stability for a.c. polynomially bounded
operators if and only if {hn}∞n=1 converges to zero exclusively
on D.
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Singular polynomially bounded operators

T is a singular polynomially bounded operator if and only if
T is similar to a singular unitary operator.

Proposition
Let {hn}∞n=1 ⊂ A be a bounded sequence. Then hn(T )→ 0
(SOT) for every singular polynomially bounded operator T if and
only if limn→∞ hn(ζ) = 0 for every ζ ∈ T. In that case hn(T )→ 0
(SOT) for every polynomially bounded operator T .
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