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The spaces B2
σ(Bd) is the collection of analytic functions on the

unit ball Bd in Cd such that for any integer m ≥ 0 and any
0 ≤ σ <∞ such that m + σ > d

2 we have the following norm
being finite:

‖f ‖2
Bσ2

:=
m−1∑
j=0

|f (j)(0)|2 +

∫
Bd

|(1−|z |2)m+σf (m)(z)|2 d V (z)

(1− |z |2)d+1
.

One can show that these spaces are independent of m and are
Hilbert spaces, with obvious inner products. The spaces Bσ

2 (Bd)
are reproducing kernel Hilbert spaces with kernels given by
kσλ (z) = 1

(1−λ·z)
2σ . A minor modification has to be made when

σ = 0, but this introduces a logarithmic reproducing kernel.

Alexander Volberg. A paper by Brett Wick and Alexander Volberg Non-homogeneous T1 and Bergman kernels



A non-negative measure µ supported inside Bd is called a
B2
σ(Bd)-Carleson measure if∫

Bd

|f (z)|2dµ(z) ≤ C (µ)2‖f ‖2
B2
σ(Bd ) ∀f ∈ B2

σ(Bd).

This is a function theoretic property and is looking for the measures
µ that ensure the continuous embedding of B2

σ(Bd) ⊂ L2(Bd ;µ).
There are geometric ways that one can characterize the
Bσ

2 (Bd)-Carleson measures. These characterizations are typically
given in terms of the “capacity” associated to the function space
Bσ

2 (Bd) and an interaction between the geometry of certain sets
arising from the reproducing kernel kσλ (z). Cascante, Ortega,
Tchoundja. However, these characterizations had the restriction of
only working in the range 0 ≤ σ ≤ 1

2 , and when d
2 ≤ σ. Namely,

previous methods were unable to answer the question in the
difficult range of 1

2 < σ < d
2 . However, using the methods of

non-homogeneous harmonic analysis, we can give a
characterization of the Bσ

2 (Bd) using the Main Theorem in the
form written on the next slides for all values of σ at once.
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But first we need the following proposition of Arcozzi, Rochberg,
Sawyer. Their proposition holds in an arbitrary Hilbert space with
a reproducing kernel. Let J be a Hilbert space of functions on a
domain X with reproducing kernel function jx . In this context, a
measure µ is Carleson exactly if the inclusion map ι from J to
L2(X ;µ) is bounded.

Proposition

A measure µ is a J -Carleson measure if and only if the linear map

f (z)→ T (f )(z) =

∫
X

Re jx(z)f (x)dµ(x)

is bounded on L2(X ;µ).
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In Cd , let Bd denote the open unit ball and consider the kernels
given by Km(z ,w) := Re 1

(1−z̄·w)m , ∀|z | ≤ 1, |w | ≤ 1 .

Theorem (Characterization of Carleson Measures for
Besov–Sobolev Spaces)

Let µ be a positive Borel measure in Bd . Then the following
conditions are equivalent:

(a) µ is a Bσ
2 (Bd)-Carleson measure;

(b) Tµ,2σ : L2(Bd ;µ)→ L2(Bd ;µ) is bounded;

(c) There is a constant C such that

(i) ‖Tµ,2σχQ‖2
L2(Bd ;µ) ≤ C µ(Q) for all ∆-cubes Q;

(ii) µ(B∆(x , r)) ≤ C r 2σ for all balls B∆(x , r) that intersect
Cd \ Bd .
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Let X be a geometrically doubling metric space. Let λ(x , r) be a
positive function, increasing and doubling in r , i.e.
λ(x , 2r) 6 Cλ(x , r), where C does not depend on x and r .
Suppose K (x , y) : X × X → R is a Calderon-Zygmund kernel,
associated to a function λ, i. e.

|K (x , y)| 6 C min

(
1

λ(x , d(x , y))
,

1

λ(y , d(x , y))

)
, (0.1)

|K (x , y)− K (x ′, y)| 6 C
d(x , x ′)ε

d(x , y)ελ(x , d(x , y))
, d(x , y) > Cd(x , x ′),

(0.2)

|K (x , y)− K (x , y ′)| 6 C
d(y , y ′)ε

|xy |ελ(y , d(x , y))
, d(x , y) > Cd(y , y ′).

(0.3)

Let µ be a measure on X , such that µ(B(x , r)) 6 Cλ(x , r), where
C does not depend on x and r .
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We say that T is a Calderon-Zygmund operator with kernel K if

T is bounded L2(µ)→ L2(µ), (0.4)

Tf (x) =

∫
K (x , y)f (y)dµ(y), ∀x 6∈ suppµ, ∀f ∈ C0(X ). (0.5)

Theorem (non-homogeneous T1)

Then testing T ,T ∗ on χQ is necessary and sufficient for L2(X , µ)
boundedness of T .

Our case of λ(x , r): let all “non-Ahlfors balls”, that is B(x , r)
such that µ(B(x , r)) > rm, lie in an open set H ⊂ X . Let
λ(x , r) := max(dist(x ,X \ H), r)m. Then the abovementioned
relation between λ and µ is satisfied. Equivalently kernel k is the
usual Calderón–Zygmund kernel with parameters (m, ε) (that is
d(x , y)m, d(x , y)m+ε in the corresponding denominators) that
satisfies an extra inequality
|k(x , y)| ≤ 1

max(dist(x ,X\H),dist(y ,X\H)
=: 1

max(d(x),d(y)) .
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Metric on the ball.

We introduce the above mentioned (quasi)-metric on the spherical
layer around ∂Bd :

∆(z ,w) := ||z | − |w ||+
∣∣∣∣1− z

|z |
w

|w |

∣∣∣∣ , 1/2 ≤ |z | ≤ 2 , 1/2 ≤ |w | ≤ 2 .

Then it is easy to see that for all z ,w : |z | ≤ 1, |w | ≤ 1, we have

|Km(z ,w)| . 1

∆(z ,w)m
.

This holds because we know that
∣∣∣ 1

(1−z̄·w)m

∣∣∣ . 1
∆(z,w)m Tchoundja

proved that if ∆(ζ,w) << ∆(z ,w) then

|Km(ζ,w)− Km(z ,w)| ≤ C
∆(ζ,w)1/2

∆(z ,w)m+1/2
.

This estimate then says that the kernel Km is a Calderón–Zygmund
kernel defined on the closed unit ball, but with respect to the quasi
metric ∆(z ,w) with associated Calderón–Zygmund parameter
τ = 1/2.
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Let µ be a probability measure with compact support contained in
the spherical layer 1/2 ≤ |z | < 1 and in particular the support is
strictly inside the ball. We can see that this kernel satisfies the
hypotheses of non-homogeneous T 1 theorem above when H = Bd ,
but with respect to a certain (non-euclidean) quasi-metric ∆. It is
clear that d(z) := dist∆(z ,Cd \ Bd) = 1− |z |. Since if z ,w ∈ Bd

we have |1− z · w |m ≥ (1− |z |)m and a similar statement holding
for w . Therefore, |Km(z ,w)| ≤ 1

max(d(z),d(w))m .
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Theorem

Let µ be a probability measure supported in
{z ∈ Cd : 1/2 ≤ |z | < 1}. Then the following assertions are
equivalent:

(i) µ(B∆(x , r)) ≤ C1 rm , ∀B∆(x , r) : B∆(x , r) ∩ Cd \ Bd 6= ∅;
(ii) For all ∆-cubes Q we have ‖Tµ,mχQ‖2

L2(X ;µ) ≤ C2µ(Q).

and
‖Tµ,m : L2(X ;µ)→ L2(X ;µ)‖ ≤ C3 <∞ .

Here C3 = C (C1,C2,m), C1 = C (C3), C2 = C (C3).
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Theorem (Complex version)

Let k(z ,w) be a Calderón–Zygmund kernel of order m on
X := {1/2 ≤ |z | ≤ 2} ⊂ Cd , m ≤ 2d with Calderón–Zygmund
constants CCZ and τ , but with respect to the metric ∆ introduced
above. Let µ be a probability measure with compact support in
X ∩ Bd , and suppose that all balls B∆ in the metric ∆ such that
µ(B∆(x , r)) > rm lie in an open set H. Let also

|k(z ,w)| ≤ 1

max(d(z)m, d(w)m)
,

where d(z) := dist∆(z ,Cd \ H). Finally, suppose also that a “T 1
Condition” holds for the operator T with kernel k and for the
operator T ∗ with kernel k(w , z):

‖Tµ,mχQ‖2
L2(X ;µ) ≤ Aµ(Q) , ‖T ∗µ,mχQ‖2

L2(Rd ;µ) ≤ Aµ(Q) . (0.6)

Then ‖Tµ,m‖L2(X ;µ)→L2(X :µ) ≤ C (A,m, d , τ).
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Theorem (Real version)

Let k(x , y) be a Calderón–Zygmund kernel of order m on X ⊂ Rd ,
m ≤ d with Calderón–Zygmund constants CCZ and τ . Let µ be a
probability measure with compact support in X and all balls such
that µ(B(x , r)) > rm lie in an open set H. Let also

|k(x , y)| ≤ 1

max(d(x)m, d(y)m)
,

where d(x) := dist(x ,Rd \ H). Finally, suppose also that a “T 1
Condition” holds for the operator Tµ,m with kernel k and for the
operator T ∗µ,m with kernel k(y , x):

‖Tµ,mχQ‖2
L2(Rd ;µ) ≤ Aµ(Q) , ‖T ∗µ,mχQ‖2

L2(Rd ;µ) ≤ Aµ(Q) . (0.7)

Then ‖Tµ,m‖L2(Rd ;µ)→L2(Rd ;µ) ≤ C (A,m, d , τ).
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So our goal now is to forget about any specific setting and to give
the proof of non-homogeneous T 1 theorem on metric spaces with
operator T being a Calderón–Zygmund operator in the sense of
slides 6 and 7. That is with this λ in denominator.
The novelty of this talk is a new proof of non-homogeneous T1
theorem. Even if λ(x , r) = rm, d(x , y) = |x − y |, (euclidean metric
space Rd and the usual Calderón–Zygmund kernel of order
m ≤ d) this proof is new and “interesting”. But it works without
any change for any metric space and any (λ, µ) as on slides 6. 7.
Non-homogeneous T1 theorems were first proved by
Nazarov–Treil–Volberg (NTV) and by Tolsa. These theorems, and
their analogs like various (especially non-accretive) Tb theorems
were widely used during the next decade to answer Denjoy’s
question about Analytic capacity/Geometric Measure Theory : this
was done by Mattila, Melnikov, Verdera in “homogeneous” case
and by David, Léger, and by NTV in the general case. Also
questions of Painlevé, Vitushkin and Ahlfors about Analytic
capacity were answered. This was done by Tolsa, he used
non-homogeneous non-accretive Tb theorem of NTV.
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We are in a position to formulate our main results. Recall when
operator T is called an operator with Calderón–Zygmundkernel of
order m.
Let X be a geometrically doubling metric space.
Let λ(x , r) be a positive function, increasing and doubling in r , i.e.
λ(x , 2r) 6 Cλ(x , r), where C does not depend on x and r .
Let K (x , y), λ(x , r), µ be as before on slides 6, 7. For simplicity we
formulate and prove only the simplest setting of λ and metric.
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Theorem

Let µ(B(x , r)) ≤ rm. Let T be a Calderón–Zygmund operator of
order m in Rd . Then there exists a probability space of dyadic
lattices (Ω,P) such that

T = c1,T

∫
Ω

Π(ω) dP(ω) + c2,T

∫
Ω

Π∗(ω) dP(ω)+

c3,T

∞∑
n=0

2−nεT
∫

Ω
Sn(ω) dP(ω) .

(0.8)

Moreover, εT > 0. Constants c1,T , c2,T , c3,T depend on the
Calderón–Zygmundparameters of the kernel, on m and d, and on
the best constant in the so-called T 1 conditions:

‖T 1Q‖2
2,µ ≤ C0µ(Q) , (0.9)

‖T ∗1Q‖2
2,µ ≤ C0µ(Q) , (0.10)
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The same thing holds on general geometrically doubling metric
space X (not just Rd) and any non-homogeneous
Calderón–Zygmund operator having Calderón–Zygmund kernel in
the generalized sense above. Of course measure should satisfy

µ(B(x , r)) 6 Cλ(x , r) .

We prefer to prove the Rd -version just for the sake of avoiding
some slight technicalities. For example, the construction of the
suitable probability space of random dyadic lattice on X is a bit
more involved than such construction in Rd . See two different
constructions of suitable probability spaces of dyadic lattices in
Hytönen–Martikainen and Nazarov–Reznikov–Volberg.

Alexander Volberg. A paper by Brett Wick and Alexander Volberg Non-homogeneous T1 and Bergman kernels



The T 1 theorem is a corollary of course. It has a long story: if
µ = md it was proved by David–Journé. For homogeneous
(doubling) measures µ it was proved by Christ. In the case of
non-homogeneous µ, T1 theorem was proved in NTV. Just NTV is
not quite enough however to prove the above decomposition to
shifts, and we use a beautiful step of Hytönen as well. Then
non-homogeneous T 1 theorem is just a corollary of the
decomposition result, because all shifts of order n involved in (0.8)
have norms at most n + 1 (see the discussion above), but
decomposition (0.8) has an exponentially decreasing factor.
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Probability space of dyadic lattices and dyadic shifts of
different order

Let (Ω,P) be a probability space of “dyadic” lattices on our metric
space X (below X = Rd , see Nazarov–Reznikov–V. for general X )
satisfying certain axioms. In what follows all D = D(ω) = ∪k≤NDk

are from (Ω,P). So let Q be in such a D and let Qi , i = 1, . . . , 2d

be its children. For any f ∈ L1(µ) we denote EQ f = 〈f 〉
1,µ

1Q ,

Ek :=
∑
Q∈Dk

EQ f ,

and

∆k f = (Ek+1 − Ek)f , ∆Q f := ∆k f · 1Q ,Q ∈ Dk .
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Now let f ∈ L2
0(µ) subscript 0 meaning that

∫
f dµ = 0. Then

f =
∑
Q∈D

∆Q f ,

and

∆Q f =
2d−1∑
i=1

(f , hi
Q)µhi

Q ,

where hi
Q are called (µ− Haar functions and the have the following

properties

(hi
Q , h

j
R)µ = 0,Q 6= R,

(hi
Q , h

j
Q)µ = 0, i 6= j ,

‖hi
Q‖µ = 1,

hi
Q =

∑2d−1
m=1 c i

Q,m1Qm ,

|c i
Q,m| ≤ 1/

√
µ(Qm).

Above Qm’s are children of Q. Below we will start to skip index i .
We already abbreviated hi ,µ

Q to hi
Q now we abbreviate further to hQ

unless said otherwise.
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Definition of good cubes

Definition

Cube Q ∈ D(ω) is called good ((r , γ)-good) if for any R in the
same D(ω) but such that `(R) ≥ 2r `(Q) one has

dist(Q, sk(R)) ≥ `(R)1−γ`(Q)γ , (0.11)

where sk(R) :=
⋃2d−1

m=1 ∂Qm, again Qm’s being all children of Q.

Given Q ∈ Dk we denote g(Q) = k . Our main “tool” is going to
be “dyadic shifts”. But they will be with respect to
non-homogenous measure. Their typical building blocks will be
Haar projections with respect to non-homogeneous measure µ.

Axiom of (Ω,P). ∀Q, P{Q is bad} = 1
2 .
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Dyadic shifts

Definition

We call by Sm,n (shift of complexity (m, n), or shift of complexity
max(m, n)) the operator given by the kernel

f →
∑
L∈D

∫
L

aL(x , y)f (y) dµ(y) , where

aL(x , y) =
∑

Q⊂L,R⊂L
g(Q)=g(L)+m, g(R)=g(L)+n

cL,Q,Rhi
Q(x)hj

R(y) , (0.12)

where hi
Q := hµ,iQ , hj

R := hµ,jR are Haar functions (as above)

orthogonal and normalized in L2(dµ), and |cL,Q,R | are such that∑
Q,R

|cL,Q,R |2 ≤ 1 . (0.13)
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Remark

In particular, it is easy to see that if aL has form (0.12) and satisfies

|aL(x , y)| ≤ 1

µ(L)
, (0.14)

then (0.13) is automatically satisfied, and we are dealing with
dyadic shift.
A little bit different but basically equivalent definition can be given
like that: operator sending ∆n

L(L2(µ)) to itself and having the
kernel aL(x , y) satisfying estimate (0.14) is called a local dyadic
shift of order n. Here ∆n

L(L2(µ)) denotes the space of L2(µ)
functions supported on L and having constant values on children Q
of L such that g(Q) = g(L) + n + 1. Now dyadic shift of order n is
an operator of the form Sn f :=

∑
L∈D

∫
L aL(x , y)f (y)dy, where aL

corresponds to local shift of order n.

All these definitions bring us operators satisfying obviously
‖Sm,n‖L2(µ)→L2(µ) ≤ 1 , or ‖Sn‖L2(µ)→L2(µ) ≤ n + 1 .
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Generalized shifts

We also need generalized shifts, but only of complexity (0, 1).

Definition

Let Πf :=
∑

L∈D〈f 〉L,µ
√
µ(L)

∑
`⊂L,|`|=2−s |L| cL,` · h

j
` , where {cL,`}

satisfy not just the condition µ(L)
∑

`⊂L,|`|=2−s |L| |c`,L|2 ≤ 1 that
would be equivalent to “the usual (0, s)-shift normalization
condition”, but a rather stronger Carleson condition∑

L⊂R, L∈D
µ(L)

∑
`⊂L,|`|=2−s |L|

|c`,L|2 ≤ µ(R) . (0.15)

Then Π is called a generalized shift of complexity (0, s).

With s = 1 these are paraproducts. We will need only
paraproducts and their duals.
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Proof of non-homogeneous decomposition theorem

We are proving now the decomposition to shifts Theorem of slide
15, which immediately gives non-homogeneous T 1 theorem.
Let f , g ∈ L2

0(µ), having constant value on each cube from DN .
We can write

f =
∑
Q

∑
j

(f , hj
Q)hj

Q , g =
∑
R

∑
i

(g , hi
R)hi

R .

First, we state and proof the theorem, that says that essential part
of bilinear form (Tf , g)µ of T can be expressed in terms of pair of
cubes, where the smallest one is good. This is almost what has
been done in NTV 1997, 2002. The difference is that in NTV an
error term (very small) appeared. To eliminate the error term we
follow the idea of Hytönen. In fact, the work Hytönen improved on
“good-bad” decomposition of NTV by replacing inequalities by an
equality and getting rid of the error term.
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Representation by the sum, where the smaller in size is
always good

Theorem

Let T be any linear operator. Then the following equality holds:

1

2
E

∑
Q,R,i,j

`(Q)>`(R)

(Thj
Q , h

i
R)(f , hj

Q)(g , hi
R) =

E
∑
Q,R,i,j

`(Q)>`(R), R is good

(Thj
Q , h

i
R)(f , hj

Q)(g , hi
R).

The same is true if we replace > by >.
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Proof

We denote σ(T ) =
∑

`(Q)>`(R)

(Thj
Q , h

i
R)(f , hj

Q)(g , hi
R) ,

σ′(T ) =
∑

`(Q)>`(R)

R is good

(Thj
Q , h

i
R)(f , hj

Q)(g , hi
R). We would like to get a

relationship between E σ(T ) and E σ′(T ). We fix R and put
ggood :=

∑
R is good

(g , hi
R)hi

R . Then

∑
Q

∑
R is good

(Thj
Q , h

i
R)(f , hj

Q)(g , hi
R) =

T (f ),
∑

R is good

(g , hi
R)hi

R

 = (T (f ), ggood) .
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Take expectations

E
∑
Q,R

(Thj
Q , h

i
R)(f , hj

Q)(g , hi
R)1R is good = E(T (f ), ggood) =

(T (f ), E ggood) =
1

2
(T (f ), g) =

1

2
E
∑
Q,R

(Thj
Q , h

i
R)(f , hj

Q)(g , hi
R).

(0.16)
Fine. But we need “triangle” sum: where `(R) ≤ `(Q)! Fix a pair
`(Q) < `(R). Then the goodness of R does not depend on Q, so

1

2
(Thj

Q , h
i
R)(f , hj

Q)(g , hi
R) = E

(
(Thj

Q , h
i
R)(f , hj

Q)(g , hi
R)1R is good|Q,R

)
.

Let us explain this equality. The right hand side is conditioned:
meaning that the left hand side involves the fraction of two
numbers: 1) the number of all lattices containing Q,R in it and
such that R (the one that is larger by size) is good and 2) the
number of lattices containing Q,R in it. This fraction is exactly
πgood = 1

2 . The equality has been explained.
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1

2
E
∑
Q,R

(Thj
Q , h

i
R)(f , hj

Q)(g , hi
R) = E

∑
Q,R

(Thj
Q , h

i
R)(f , hj

Q)(g , hi
R)1R good=

E
∑

`(Q)<`(R)

(Thj
Q , h

i
R)(f , hj

Q)(g , hi
R)1R good + E

∑
`(Q)>`(R)

(Thj
Q , h

i
R)(f , hj

Q)(g , hi
R)1R good =

1

2
E
∑

`(Q)<`(R)

(Thj
Q , h

i
R)(f , hj

Q)(g , hi
R) + E

∑
`(Q)>`(R),R good

(Thj
Q , h

i
R)(f , hj

Q)(g , hi
R),

and therefore

E
∑

`(Q)>`(R), R good

(Thj
Q , h

i
R)(f , hj

Q)(g , hi
R) =

1

2
E
∑

`(Q)>`(R)

(Thj
Q , h

i
R)(f , hj

Q)(g , hi
R) ,

(0.17)
which is the statement we wanted.
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We have just reduced the estimate of the bilinear form∑
Q,R∈D(ThQ , hR)(f , hQ)(g , hR) to the estimate over all dyadic

lattices in our family, but summing over pairs Q,R, where the
smaller in size is always good:
E
∑

Q,R∈D, smaller is good(ThQ , hR)(f , hQ). Split it to two
“triangular” sums:

E
∑

Q,R∈D, `(R)<`(Q),R is good

(ThQ , hR)(f , hQ)(g , hR)

and

E
∑

Q,R∈D, `(Q)≤`(R),Q is good

(ThQ , hR)(f , hQ)(g , hR) .

They are symmetric, so we will work only with the second sum.
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First consider σ0 := E
∑

Q∈D, Q is good(ThQ , hQ)(f , hQ)(g , hQ).
We do not care where Q is good or not and estimate the
coefficient (ThQ , hQ) in the most simple way. Recall that

hQ =
∑2d

j=1 cQ,j1Qj
, where Qj are children of Q. We also

remember that |cQ,j | ≤ 1/
√
µ(Qj). Estimating

|cQ,j ||cQ,j ′ ||(T 1Qj
, 1Qj′ )|≤1/

√
µ(Qj)1/

√
µ(Qj)C 2

0

√
µ(Qj)

√
µ(Qj) ≤ C 2

0

by (0.9), we can conclude that σ0/C 2
0 is actually splits to at most

4d shifts of order 0. Similarly we can work with s = 1, . . . , r . We
need r to be large but fixed.

σs := E
∑

Q,R∈D,Q⊂R, `(Q)=2−s`(R),Q is good

(ThQ , hR)(f , hQ)(g , hR) . (0.18)
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Inner sum: Q ⊂ R , Q is good

We gather good Q and some R like above and also
`(Q) ≤ 2−r `(R). Then it is easy to see that
dist(Q, ∂R2) ≤ 2−r−1`(R1) = `(Q) , where R1 is a descendant of
R such that `(R1) = 2r `(Q), and R2 is son of R1 that contains Q.

Lemma

Let Q ⊂ R, S(R) be the son of R containing Q, and let
dist(Q, ∂S(R)) ≥ `(Q). Let T be a Calderón–Zygmund operator
with parameter ε. Then
(ThQ , hR) = 〈hR〉S(R)

(hQ ,∆QT ∗1)µ + tQ,R , where

|tQ,R | ≤
∫
Q

∫
R\S(R)

`(Q)ε

dist(t,Q) + `(Q))m+ε
|hQ(s)||hR(t)| dµ(s)| dµ(t)

∫
Q

∫
Rd\S(R)

`(Q)ε

dist(t,Q) + `(Q))m+ε
|hQ(s)||〈hR〉S(R),µ

| dµ(s)| dµ(t) .
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t2

Consider two integral terms above separately
t1 := t1,Q,R :=

∫
R\S(R) . . . and t2 := t2,Q,R :=

∫
Rd\R . . . .

In the second integral we estimate hQ in L1(µ):
‖hQ‖1,µ ≤

√
µ(Q), and we estimate hR in L∞(µ):

‖hR‖∞ ≤ 1/
√
µ(S(R)). Integral itself is at most (recall that

µ(B(x , r) ≤ rm))∫
Rd\S(R)

`(Q)ε

(dist(t,Q) + `(Q))m+ε
dµ(t) ≤ `(Q)ε

dist(Q, sk(R))ε
.

(0.19)
So if Q is good, meaning that dist(Q, sk(R)) ≥ `(R)1−γ`(Q)γ

then (0.19) gives us

|t2,Q,R | ≤
( µ(Q)

µ(S(R))

)1/2 `(Q)1−εγ

`(R)1−εγ . (0.20)
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t1

In the first integral we estimate hQ in L1(µ): ‖hQ‖1,µ ≤
√
µ(Q),

and we cannot estimate hR in L∞(µ): ‖hR‖L∞(R\S(R)). The

problem is that this supremum is bounded by 1/
√
µ(s(R)) for a

sibling s(R) of S(R). But because doubling is missing this can be

an uncontrollably bad estimate. The term
(

µ(Q)
µ(S(R))

)1/2
is a good

term , at least it is bounded by 1, on the other hand the term(
µ(Q)
µ(s(R))

)1/2
is not bounded by anything, it is uncontrollable.

Therefore, we estimate here ‖hR‖1,µ ≤
√
µ(R). THUS, we are

forced to estimate Integral kernel itself in L∞ as all L1(µ) has been

just spent. So we get the term `(Q)ε

dist(Q,sk(R))m+ε
.

As Q is good, meaning that dist(Q, sk(R)) ≥ `(R)1−γ`(Q)γ then

we got |t1,Q,R | ≤ (µ(Q)µ(R))1/2 `(Q)ε
`(R)m+ε−(m+ε)γ`(Q)(m+ε)γ . Choose

γ := ε
2(m+ε) . Then

|t1,Q,R | ≤
(
`(Q)
`(R)

)ε/2
√
µ(Q)
√
µ(R)

`(R)m ≤
(
µ(Q)
µ(R)

)1/2(
`(Q)
`(R)

)ε/2
.
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Inner sum is the shifts and paraproducts combination

Inner sums
∑

Q⊂R, `(Q)=2−r−k`(R),Q is good(ThQ , hR)(f , hQ), (g , hR),
k ≥ 0, can be written as three sums:∑

R

∑
Q⊂R, `(Q)=2−r−k`(R),Q is good

t1,Q,R(f , hQ), (g , hR) ,

∑
R

∑
Q⊂R, `(Q)=2−r−k`(R),Q is good

t2,Q,R(f , hQ), (g , hR) ,

and∑
R

∑
Q⊂R, `(Q)=2−r−k`(R),Q is good

〈hR〉S(R)
(hQ ,∆QT ∗1)µ(f , hQ)(g , hR) .

Obviously, the first sum is the bilinear form of a shift of complexity

(0, r + k) having the coefficient 2−
ε(r+k)

2 in front. The second sum
is also the bilinear form of a shift of complexity (0, r + k) having

the coefficient 2−
(1−εγ)(r+k)

2 in front. We just look at two . previous

slides and notice that
∑

Q⊂S(R)

((
µ(Q)/µ(S(R)

)1/2
)2
≤ 1.
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The sum of third sums is a paraproduct

Alexander Volberg. A paper by Brett Wick and Alexander Volberg Non-homogeneous T1 and Bergman kernels



The outer sum. Why it is the combination of shifts?

The decomposition of the outer sum We are left to decompose

E
∑

Q∩R=∅, `(Q)≤`(R),Q is good

(ThQ , hR)(f , hQ , g , hR)

into the bilinear form of (s, t)-shifts with exponentially small in
max(s, t) coefficients.
Denote

D(Q,R) := `(Q) + dist(Q,R) + `(R) .

Also let L(Q,R) be a dyadic interval from the same lattice such
that `(L(Q,R) ∈ 2D(Q,R), 4D(Q,R)) that contains R.

Alexander Volberg. A paper by Brett Wick and Alexander Volberg Non-homogeneous T1 and Bergman kernels



Exactly as we did this before we can estimate

(ThQ , hR) =

∫
R

∫
Q

[K (x , y)− K (x , cQ)]hQ(y)hR(x) dµ(y) dµ(x)

by estimating ‖hQ‖1,µ ≤
√
µ(Q), ‖hR‖1,µ ≤

√
µ(R), and

`(Q)ε

dist(Q,R)m+ε
≤ `(Q)ε/2/`(R)ε/2+m if dist(Q,R) ≤ `(R).

Otherwise the estimate is `(Q)ε/D(Q,R)m+ε. These two
estimates are both united into the following one obviously

|(ThQ , hR)| ≤ C
(`(Q)

`(R)

)ε/2 `(R)ε/2

D(Q,R)m+ε/2

√
µ(Q)

√
µ(R) . (0.21)

Of course in this estimate we used not only that Q is good, but
also that `(Q) ≤ 2−r `(R). Only having this latter condition we
can apply the estimate on dist(Q,R) that was used in getting the
previous inequality (0.21).
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Simple pairs: comparable size

However, if `(Q) ∈ [2−r−1`(R), `(R)] we use just a trivial estimate
of coefficient (ThQ , hR)|, namely

|(ThQ , hR)| ≤ C (C0, d) , (0.22)

where C0 is from (0.9). This is not dangerous at all because such
pairs Q,R will be able to form below only shifts of complexity
(s, t), where 0 ≤ s ≤ t ≤ r ; the number of such shifts is at most
r(r+1)

2 , and let us recall, that r is not a large number, it depends
only on d .
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Now in a given D ∈ Ω a pair of Q,R may or may not be inside
L(Q,R) (R ⊂ L(Q,R) by definition). But the ratio of nice
lattices (these are those when both Q,R are inside L(Q,R)) with
respect to all lattices in which both Q,R are present is bounded
away from zero, this ratio (probability) satisfies

p(Q,R) ≥ Pd > 0 . (0.23)

We want to modify the following expectation

Σ := E
∑

Q∩R=∅, `(Q)≤`(R),Q is good

(ThQ , hR)(f , hQ , g , hR) .

This expectation is really a certain sum itself, namely the sum over
all lattices in Ω divided by their total number ](Ω) =: M. Each
time Q,R are not in a nice lattice we put zero in front of
corresponding term. This changes very much the sum. However
we can make up for that, and we can leave the sum unchanged
if for nice lattices we put the coefficient 1/p(Q,R) in front of
corresponding terms (and keep 0 otherwise).
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Then
number of lattices containing Q,R

M
=

1

p(Q,R)

number of nice lattices containing Q,R

M
.

Notice that in the original sum Σ terms Q,R are multiplied by the
LHS. The modified sum will contain the same terms multiplied by
the RHS . So it is not modified at all, it is exactly the same
sum! We can write it again as

E
∑

Q∩R=∅, `(Q)≤`(R),Q is good

m(Q,R, ω)(ThQ , hR)(f , hQ)(g , hR) ,

where the random coefficients m(Q,R, omega) are either 0 (if the
lattice D = ω is not nice), or 1/p(Q,R) if the lattice is nice.
Now let us fix two positive integers s ≤ t, fix a lattice, and
consider this latter sum only for this lattice, and write it as∑
s

∑
t

∑
L

∑
Q⊂L,R⊂L,`(Q)=2−t`(L),`(R)=2−s`(L)

m(P,Q)(ThQ , hR)(f , hQ)(g , hR) =:

∑
s

∑
t

σs,t .
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Each σs,t is a dyadic shift of complexity (s, t). In fact, use
p(Q,R) ≥ Pd > 0 and use already proved (0.21), which is the
following:

|(ThQ , hR)| ≤ C
(`(Q)

`(R)

)ε/2 `(R)ε/2

D(Q,R)m+ε/2

√
µ(Q)

√
µ(R) .

Then one can easily see that the sum of squares of coefficients

inside each L is bounded. Moreover, the terms
(
`(Q)
`(R)

)ε/2
,(

`(R)
D(Q,R)

)ε/2
from (0.21) gives us the desired exponentially small

coefficient whose size is at most
2−ε(t−s)/2 · 2−εs/2 = 2−εt/2 = 2−εmax(s,t)/2.
By T1 operator we understand the operator satisfying the test
conditions (along with its adjoint operator).
The theorem on decomposition of T1 operator with
Calderón–Zygmund kernel to “dyadic shifts” of various order with
exponential (in order) coefficients is completely proved.
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