Composition of Haar Paraproducts

Brett D. Wick

Georgia Institute of Technology
School of Mathematics

Hilbert Function Spaces
Gargnano sul Garda
May 20 – 24, 2013
This talk is based on joint work with:

- Eric T. Sawyer
- McMaster University
- Sandra Pott
- Lund University
- Maria Reguera Rodriguez
- Universidad Autónoma de Barcelona
- B. D. Wick (Georgia Tech)
This talk is based on joint work with:

Eric T. Sawyer
McMaster University
This talk is based on joint work with:

Eric T. Sawyer
McMaster University

Sandra Pott
Lund University
This talk is based on joint work with:

Eric T. Sawyer
McMaster University

Sandra Pott
Lund University

Maria Reguera Rodriguez
Universidad Autónoma de Barcelona
Sarason’s Conjecture

- $H^2(\mathbb{D})$, the standard Hardy space on \mathbb{D}.
Sarason’s Conjecture

- $H^2(\mathbb{D})$, the standard Hardy space on \mathbb{D}.
- $\mathbb{P} : L^2(\mathbb{T}) \rightarrow H^2(\mathbb{D})$ be the orthogonal projection.
Sarason’s Conjecture

- $H^2(\mathbb{D})$, the standard Hardy space on \mathbb{D}.
- $P : L^2(\mathbb{T}) \to H^2(\mathbb{D})$ be the orthogonal projection.
- A Toeplitz operator with symbol φ is the following map from $H^2(\mathbb{D}) \to H^2(\mathbb{D})$:
 \[T_\varphi(f) \equiv P (\varphi f). \]
Sarason’s Conjecture

- $H^2(\mathbb{D})$, the standard Hardy space on \mathbb{D}.
- $\mathbb{P} : L^2(\mathbb{T}) \to H^2(\mathbb{D})$ be the orthogonal projection.
- A Toeplitz operator with symbol φ is the following map from $H^2(\mathbb{D}) \to H^2(\mathbb{D})$:
 $$T\varphi(f) \equiv \mathbb{P}(\varphi f).$$
- An important question raised by Sarason is the following:

\begin{center}
Conjecture (Sarason Conjecture)
\end{center}

The composition of $T\varphi T\psi$ is bounded on $H^2(\mathbb{D})$ if and only if

$$\sup_{z \in \mathbb{D}} \left(\int_{\mathbb{T}} \frac{1 - |z|^2}{|1 - z\bar{\xi}|^2} |\varphi(\xi)|^2\, dm(\xi) \right) \left(\int_{\mathbb{T}} \frac{1 - |z|^2}{|1 - z\bar{\xi}|^2} |\psi(\xi)|^2\, dm(\xi) \right) < \infty$$
Sarason’s Conjecture

- $H^2(\mathbb{D})$, the standard Hardy space on \mathbb{D}.
- $P : L^2(\mathbb{T}) \to H^2(\mathbb{D})$ be the orthogonal projection.
- A Toeplitz operator with symbol φ is the following map from $H^2(\mathbb{D}) \to H^2(\mathbb{D})$:
 $$T_\varphi(f) \equiv P(\varphi f).$$
- An important question raised by Sarason is the following:

Conjecture (Sarason Conjecture)

The composition of $T_\varphi T_\psi$ is bounded on $H^2(\mathbb{D})$ if and only if

$$\sup_{z \in \mathbb{D}} \left(\int_\mathbb{T} \frac{1 - |z|^2}{|1 - z\bar{\xi}|^2} |\varphi(\xi)|^2 \, dm(\xi) \right) \left(\int_\mathbb{T} \frac{1 - |z|^2}{|1 - z\bar{\xi}|^2} |\psi(\xi)|^2 \, dm(\xi) \right) < \infty$$

Unfortunately, this is not true!
Sarason’s Conjecture

- \(H^2(\mathbb{D}) \), the standard Hardy space on \(\mathbb{D} \).
- \(P : L^2(\mathbb{T}) \to H^2(\mathbb{D}) \) be the orthogonal projection.
- A Toeplitz operator with symbol \(\varphi \) is the following map from \(H^2(\mathbb{D}) \to H^2(\mathbb{D}) \):
 \[
 T_{\varphi}(f) \equiv P(\varphi f).
 \]
- An important question raised by Sarason is the following:

Conjecture (Sarason Conjecture)

The composition of \(T_{\varphi} T_{\psi} \) is bounded on \(H^2(\mathbb{D}) \) if and only if

\[
\sup_{z \in \mathbb{D}} \left(\int_{\mathbb{T}} \frac{1 - |z|^2}{|1 - z\overline{\xi}|^2} |\varphi(\xi)|^2 \, dm(\xi) \right) \left(\int_{\mathbb{T}} \frac{1 - |z|^2}{|1 - z\overline{\xi}|^2} |\psi(\xi)|^2 \, dm(\xi) \right) < \infty
\]

Unfortunately, this is not true! A counterexample was constructed by Nazarov.
Sarason’s Conjecture

- $H^2(\mathbb{D})$, the standard Hardy space on \mathbb{D}.
- $P : L^2(T) \rightarrow H^2(\mathbb{D})$ be the orthogonal projection.
- A Toeplitz operator with symbol φ is the following map from $H^2(\mathbb{D}) \rightarrow H^2(\mathbb{D})$:
 $$T_\varphi(f) \equiv P(\varphi f).$$
- An important question raised by Sarason is the following:

Question (Sarason Question (Revised Version))

Obtain necessary and sufficient (testable ?) conditions so that one can tell if $T_\varphi T_\psi$ is bounded on $H^2(\mathbb{D})$ by evaluating these conditions.
Sarason’s Conjecture

- $H^2(\mathbb{D})$, the standard Hardy space on \mathbb{D}.
- $P : L^2(T) \to H^2(\mathbb{D})$ be the orthogonal projection.
- A Toeplitz operator with symbol φ is the following map from $H^2(\mathbb{D}) \to H^2(\mathbb{D})$:
 \[T_\varphi(f) \equiv P(\varphi f) \, . \]
- An important question raised by Sarason is the following:

Question (Sarason Question (Revised Version))

Obtain necessary and sufficient (testable (?)) conditions so that one can tell if $T_\varphi T_\psi$ is bounded on $H^2(\mathbb{D})$ by evaluating these conditions.

Possible to rephrase this question as one about the two-weight boundedness of the Hilbert transform.
Sarason’s Conjecture

- $H^2(\mathbb{D})$, the standard Hardy space on \mathbb{D}.
- $\mathbb{P} : L^2(\mathbb{T}) \to H^2(\mathbb{D})$ be the orthogonal projection.
- A Toeplitz operator with symbol φ is the following map from $H^2(\mathbb{D}) \to H^2(\mathbb{D})$:
 \[T_\varphi(f) \equiv \mathbb{P}(\varphi f). \]
- An important question raised by Sarason is the following:

Question (Sarason Question (Revised Version))

Obtain necessary and sufficient (testable (?)) conditions so that one can tell if $T_\varphi T_\psi$ is bounded on $H^2(\mathbb{D})$ by evaluating these conditions.

Possible to rephrase this question as one about the two-weight boundedness of the Hilbert transform. Deep work by Nazarov, Treil, Volberg, and then subsequent work by Lacey, Sawyer, Shen, Uriarte-Tuero allow for an answer in terms of the Hilbert transform.
Haar Paraproducts

- $L^2 \equiv L^2(\mathbb{R})$;
Haar Paraproducts

- \(L^2 \equiv L^2(\mathbb{R}); \)
- \(\mathcal{D} \) is the standard grid of dyadic intervals on \(\mathbb{R}; \)
Haar Paraproducts

- $L^2 \equiv L^2(\mathbb{R})$;
- \mathcal{D} is the standard grid of dyadic intervals on \mathbb{R};
- Define the Haar function h^0_I and averaging function h^1_I by
 \[
 h^0_I \equiv h_I \equiv \frac{1}{\sqrt{|I|}} (-1_{I_-} + 1_{I_+}) \quad I \in \mathcal{D}
 \]
 \[
 h^1_I \equiv \frac{1}{|I|} 1_I \quad I \in \mathcal{D}.
 \]
Haar Paraproducts

- $L^2 \equiv L^2(\mathbb{R})$;
- \mathcal{D} is the standard grid of dyadic intervals on \mathbb{R};
- Define the Haar function h_0^I and averaging function h_1^I by
 \[h_0^I \equiv h_I \equiv \frac{1}{\sqrt{|I|}} (-1_{I_-} + 1_{I_+}) \quad I \in \mathcal{D} \]
 \[h_1^I \equiv \frac{1}{|I|} 1_I \quad I \in \mathcal{D}. \]
Haar Paraproducts

- $L^2 \equiv L^2(\mathbb{R})$;
- D is the standard grid of dyadic intervals on \mathbb{R};
- Define the Haar function h^0_I and averaging function h^1_I by

$$h^0_I \equiv h_I \equiv \frac{1}{\sqrt{|I|}} \left(-1_{I_-} + 1_{I_+} \right) \quad I \in D$$

$$h^1_I \equiv \frac{1}{|I|} 1_I \quad I \in D.$$
Haar Paraproducts

- $L^2 \equiv L^2(\mathbb{R})$;
- \mathcal{D} is the standard grid of dyadic intervals on \mathbb{R};
- Define the Haar function h^0_I and averaging function h^1_I by

$$h^0_I \equiv h_I \equiv \frac{1}{\sqrt{|I|}} (-1_{I_-} + 1_{I_+}) \quad I \in \mathcal{D}$$

$$h^1_I \equiv \frac{1}{|I|} 1_I \quad I \in \mathcal{D}.$$
Haar Paraproducts from Multiplication Operators

Given a function b and f it is possible to study their pointwise product by expanding in their Haar series:
Haar Paraproducets from Multiplication Operators

Given a function b and f it is possible to study their pointwise product by expanding in their Haar series:

$$bf$$
Haar Paraproducts from Multiplication Operators

Given a function b and f it is possible to study their pointwise product by expanding in their Haar series:

$$bf = \left(\sum_{I \in \mathcal{D}} \langle b, h_I \rangle_{L^2} h_I \right) \left(\sum_{J \in \mathcal{D}} \langle f, h_J \rangle_{L^2} h_J \right)$$
Haar Paraproducts from Multiplication Operators

Given a function b and f it is possible to study their pointwise product by expanding in their Haar series:

$$bf = \left(\sum_{I \in \mathcal{D}} \langle b, h_I \rangle_{L^2} h_I \right) \left(\sum_{J \in \mathcal{D}} \langle f, h_J \rangle_{L^2} h_J \right)$$

$$= \sum_{I, J \in \mathcal{D}} \langle b, h_I \rangle_{L^2} \langle f, h_J \rangle_{L^2} h_I h_J$$
Haar Paraproducts from Multiplication Operators

Given a function b and f it is possible to study their pointwise product by expanding in their Haar series:

$$bf = \left(\sum_{I \in \mathcal{D}} \langle b, h_I \rangle_{L^2} h_I \right) \left(\sum_{J \in \mathcal{D}} \langle f, h_J \rangle_{L^2} h_J \right)$$

$$= \sum_{I, J \in \mathcal{D}} \langle b, h_I \rangle_{L^2} \langle f, h_J \rangle_{L^2} h_I h_J$$

$$= \left(\sum_{I = J} + \sum_{I \subsetneq J} + \sum_{J \subsetneq I} \right) \langle b, h_I \rangle_{L^2} \langle f, h_J \rangle_{L^2} h_I h_J$$
Haar Paraproducts from Multiplication Operators

Given a function b and f it is possible to study their pointwise product by expanding in their Haar series:

$$bf = \left(\sum_{I \in D} \langle b, h_I \rangle_{L^2} h_I \right) \left(\sum_{J \in D} \langle f, h_J \rangle_{L^2} h_J \right)$$

$$= \sum_{I, J \in D} \langle b, h_I \rangle_{L^2} \langle f, h_J \rangle_{L^2} h_I h_J$$

$$= \left(\sum_{I = J} + \sum_{I \subsetneq J} + \sum_{J \subsetneq I} \right) \langle b, h_I \rangle_{L^2} \langle f, h_J \rangle_{L^2} h_I h_J$$

$$= \sum_{I \in D} \langle b, h_I \rangle_{L^2} \langle f, h_I \rangle_{L^2} h_I^1$$
Haar Paraproducts from Multiplication Operators

Given a function b and f it is possible to study their pointwise product by expanding in their Haar series:

$$bf = \left(\sum_{I \in \mathcal{D}} \langle b, h_I \rangle_{L^2} h_I \right) \left(\sum_{J \in \mathcal{D}} \langle f, h_J \rangle_{L^2} h_J \right)$$

$$= \sum_{I,J \in \mathcal{D}} \langle b, h_I \rangle_{L^2} \langle f, h_J \rangle_{L^2} h_I h_J$$

$$= \left(\sum_{I=J} + \sum_{I \subsetneq J} + \sum_{J \subsetneq I} \right) \langle b, h_I \rangle_{L^2} \langle f, h_J \rangle_{L^2} h_I h_J$$

$$= \sum_{I \in \mathcal{D}} \langle b, h_I \rangle_{L^2} \langle f, h_I \rangle_{L^2} h_I^1 + \sum_{I \in \mathcal{D}} \langle b, h_I \rangle_{L^2} \langle f, h_I^1 \rangle_{L^2} h_I$$

$$+ \sum_{I \in \mathcal{D}} \langle b, h_I^1 \rangle_{L^2} \langle f, h_I \rangle_{L^2} h_I.$$
Haar Paraproducts

Definition (Haar Paraproducts)

Given a symbol sequence \(b = \{b_I\}_{I \in \mathcal{D}} \) and a pair \((\alpha, \beta) \in \{0, 1\}^2\), define the \textit{dyadic paraproduct} acting on a function \(f \) by

\[
P_b^{(\alpha, \beta)} f \equiv \sum_{I \in \mathcal{D}} b_I \left\langle f, h_I^\beta \right\rangle_{L^2} h_I^\alpha.
\]
Haar Paraproducts

Definition (Haar Paraproducts)

Given a symbol sequence $b = \{b_I\}_{I \in \mathcal{D}}$ and a pair $(\alpha, \beta) \in \{0, 1\}^2$, define the \textit{dyadic paraproduct} acting on a function f by

$$P_b^{(\alpha, \beta)} f \equiv \sum_{I \in \mathcal{D}} b_I \langle f, h^\beta_I \rangle_{L^2} h^\alpha_I.$$

The index (α, β) is referred to as the \textit{type} of $P_b^{(\alpha, \beta)}$.
Haar Paraproducts

Definition (Haar Paraproducts)

Given a symbol sequence \(b = \{b_I\}_{I \in \mathcal{D}} \) and a pair \((\alpha, \beta) \in \{0, 1\}^2\), define the dyadic paraproduct acting on a function \(f \) by

\[
P_b^{(\alpha, \beta)}f \equiv \sum_{I \in \mathcal{D}} b_I \langle f, h_I^\beta \rangle_{L^2} h_I^\alpha.
\]

The index \((\alpha, \beta)\) is referred to as the type of \(P_b^{(\alpha, \beta)} \).

Question (Discrete Sarason Question)

For each choice of pairs \((\alpha, \beta), (\epsilon, \delta) \in \{0, 1\}^2\), obtain necessary and sufficient conditions on symbols \(b \) and \(d \) so that

\[
\left\| P_b^{(\alpha, \beta)} \circ P_d^{(\epsilon, \delta)} \right\|_{L^2 \to L^2} < \infty.
\]
Internal Cancellations and Simple Characterizations

When there are internal zeros the behavior of $P_b^{(\alpha,0)} \circ P_d^{(0,\beta)}$ reduces to the behavior of $P_a^{(\alpha,\beta)}$ for a special symbol a.
Internal Cancellations and Simple Characterizations

When there are internal zeros the behavior of $P_b^{(\alpha,0)} \circ P_d^{(0,\beta)}$ reduces to the behavior of $P_a^{(\alpha,\beta)}$ for a special symbol a. For $f, g \in L^2$, let $f \otimes g : L^2 \to L^2$ be the map given by

$$f \otimes g(h) \equiv f \langle g, h \rangle_{L^2}.$$
Internal Cancellations and Simple Characterizations

When there are internal zeros the behavior of $P_{b}^{(α,0)} \circ P_{d}^{(0,β)}$ reduces to the behavior of $P_{a}^{(α,β)}$ for a special symbol a. For $f, g \in L^2$, let $f \otimes g : L^2 \to L^2$ be the map given by

$$f \otimes g(h) \equiv f \langle g, h \rangle_{L^2}.$$

Then:

$$P_{b}^{(α,0)} \circ P_{d}^{(0,β)}$$
Internal Cancellations and Simple Characterizations

When there are internal zeros the behavior of $P_b^{(\alpha,0)} \circ P_d^{(0,\beta)}$ reduces to the behavior of $P_a^{(\alpha,\beta)}$ for a special symbol a. For $f, g \in L^2$, let $f \otimes g : L^2 \to L^2$ be the map given by

$$f \otimes g(h) \equiv f \langle g, h \rangle_{L^2}.$$

Then:

$$P_b^{(\alpha,0)} \circ P_d^{(0,\beta)} = \left(\sum_{I \in \mathcal{D}} b_I h_I^\alpha \otimes h_I \right) \left(\sum_{J \in \mathcal{D}} d_J h_J \otimes h_J^\beta \right)$$
Motivations Classical Characterizations

Internal Cancellations and Simple Characterizations

When there are internal zeros the behavior of $P_b^{(\alpha,0)} \circ P_d^{(0,\beta)}$ reduces to the behavior of $P_a^{(\alpha,\beta)}$ for a special symbol a. For $f, g \in L^2$, let $f \otimes g : L^2 \to L^2$ be the map given by

$$f \otimes g(h) \equiv f \langle g, h \rangle_{L^2}.$$

Then:

$$P_b^{(\alpha,0)} \circ P_d^{(0,\beta)} = \left(\sum_{I \in \mathcal{D}} b_I h_I^\alpha \otimes h_I \right) \left(\sum_{J \in \mathcal{D}} d_J h_J \otimes h_J^\beta \right) = \sum_{I \in \mathcal{D}} b_I d_I h_I^\alpha \otimes h_I^\beta$$
Internal Cancellations and Simple Characterizations

When there are internal zeros the behavior of $P^{(\alpha,0)}_b \circ P^{(0,\beta)}_d$ reduces to the behavior of $P^{(\alpha,\beta)}_a$ for a special symbol a. For $f, g \in L^2$, let $f \otimes g : L^2 \to L^2$ be the map given by

$$f \otimes g(h) \equiv f \langle g, h \rangle_{L^2}.$$

Then:

$$P^{(\alpha,0)}_b \circ P^{(0,\beta)}_d = \left(\sum_{I \in \mathcal{D}} b_I h^\alpha_I \otimes h_I \right) \left(\sum_{J \in \mathcal{D}} d_J h_J \otimes h^\beta_J \right)$$

$$= \sum_{I \in \mathcal{D}} b_I d_I h^\alpha_I \otimes h^\beta_I$$

$$= P^{(\alpha,\beta)}_{b \circ d}.$$
Internal Cancellations and Simple Characterizations

When there are internal zeros the behavior of $P_{b}^{(\alpha,0)} \circ P_{d}^{(0,\beta)}$ reduces to the behavior of $P_{a}^{(\alpha,\beta)}$ for a special symbol a. For $f, g \in L^2$, let $f \otimes g : L^2 \to L^2$ be the map given by

$$f \otimes g(h) \equiv f \langle g, h \rangle_{L^2}.$$

Then:

$$P_{b}^{(\alpha,0)} \circ P_{d}^{(0,\beta)} = \left(\sum_{I \in \mathcal{D}} b_I h_I^{\alpha} \otimes h_I \right) \left(\sum_{J \in \mathcal{D}} d_J h_J^{\beta} \otimes h_J^{\beta} \right)$$

$$= \sum_{I \in \mathcal{D}} b_I d_I h_I^{\alpha} \otimes h_I^{\beta}$$

$$= P_{b \circ d}^{(\alpha,\beta)}.$$

Here $b \circ d$ is the Schur product of the symbols, i.e., $(b \circ d)_I = b_I d_I$.

B. D. Wick (Georgia Tech) Composition of Haar Paraproducts HFS 7 / 29
Norms and Induced Sequences

For a sequence $a = \{a_I\}_{I \in \mathcal{D}}$ define the following quantities:

$$
\|a\|_{\ell_\infty} \equiv \sup_{I \in \mathcal{D}} |a_I|;
$$

$$
\|a\|_{CM} \equiv \sup_{I \in \mathcal{D}} \sum_{J \subset I} |a_J|^2.
$$

Associate to $\{a_I\}_{I \in \mathcal{D}}$ two additional sequences indexed by \mathcal{D}:

$$
E(a) \equiv \begin{cases} 1 & |I| \sum_{J \subset I} a_J \\ I \in \mathcal{D} \end{cases};
$$

$$
S(a) \equiv \begin{cases} \langle \sum_{J \in \mathcal{D}} a_J h^*_J, h_I \rangle_{L_2} \\ I \in \mathcal{D} \end{cases} = \begin{cases} \sum_{J \varsubsetneq I} a_J h^*_J(I) \\ I \in \mathcal{D} \end{cases}.
$$
Norms and Induced Sequences

For a sequence $a = \{a_I\}_{I \in \mathcal{D}}$ define the following quantities:

$$\|a\|_{\ell^\infty} \equiv \sup_{I \in \mathcal{D}} |a_I|;$$
Norms and Induced Sequences

For a sequence \(a = \{a_I\}_{I \in D} \) define the following quantities:

\[
\|a\|_{\ell^\infty} \equiv \sup_{I \in D} |a_I| ;
\]

\[
\|a\|_{CM} \equiv \sqrt{\sup_{I \in D} \frac{1}{|I|} \sum_{J \subset I} |a_J|^2} .
\]
Norms and Induced Sequences

For a sequence $a = \{a_I\}_{I \in \mathcal{D}}$ define the following quantities:

$$\|a\|_{\ell^\infty} \equiv \sup_{I \in \mathcal{D}} |a_I|;$$

$$\|a\|_{CM} \equiv \sqrt{\sup_{I \in \mathcal{D}} \frac{1}{|I|} \sum_{J \subset I} |a_J|^2}.$$

Associate to $\{a_I\}_{I \in \mathcal{D}}$ two additional sequences indexed by \mathcal{D}:
Norms and Induced Sequences

For a sequence $a = \{a_I\}_{I \in \mathcal{D}}$ define the following quantities:

$$
\|a\|_{\ell_\infty} \equiv \sup_{I \in \mathcal{D}} |a_I| ;
$$

$$
\|a\|_{CM} \equiv \left(\sup_{I \in \mathcal{D}} \frac{1}{|I|} \sum_{J \subset I} |a_J|^2 \right)^{\frac{1}{2}} .
$$

Associate to $\{a_I\}_{I \in \mathcal{D}}$ two additional sequences indexed by \mathcal{D}:

$$
E(a) \equiv \left\{ \frac{1}{|I|} \sum_{J \subset I} a_J \right\}_{I \in \mathcal{D}} ;
$$

$$
S(a) \equiv \left\{ \sum_{J \subset I} a_J \right\}_{I \in \mathcal{D}} .
$$
Norms and Induced Sequences

For a sequence $a = \{a_I\}_{I \in \mathcal{D}}$ define the following quantities:

$$\|a\|_{\ell^\infty} \equiv \sup_{I \in \mathcal{D}} |a_I|;$$

$$\|a\|_{CM} \equiv \sqrt{\sup_{I \in \mathcal{D}} \frac{1}{|I|} \sum_{J \subset I} |a_J|^2}. $$

Associate to $\{a_I\}_{I \in \mathcal{D}}$ two additional sequences indexed by \mathcal{D}:

$$E(a) \equiv \left\{ \frac{1}{|I|} \sum_{J \subset I} a_J \right\}_{I \in \mathcal{D}};$$

$$\widehat{S}(a) \equiv \left\{ \left\langle \sum_{J \in \mathcal{D}} a_J h_J^1, h_I \right\rangle_{L^2} \right\}_{I \in \mathcal{D}} = \left\{ \sum_{J \subsetneq I} a_J \widehat{h}_J^1 (I) \right\}_{I \in \mathcal{D}}.$$
Classical Characterizations

Theorem (Characterizations of Type $(0,0)$, $(0,1)$, and $(1,0)$)

The following characterizations are true:

The operator norm $\|P_{(1,1)}a\|_{L^2 \to L^2}$ of $P_{(1,1)}a$ on L^2 satisfies

$$\|P_{(1,1)}a\|_{L^2 \to L^2} \approx \|S(a)\|_{CM} + \|E(a)\|_{\ell^\infty}.$$
Classical Characterizations

Theorem (Characterizations of Type $(0, 0)$, $(0, 1)$, and $(1, 0)$)

The following characterizations are true:

\[\| P^{(0,0)}_a \|_{L^2 \to L^2} = \| a \|_{\ell^\infty}; \]
Classical Characterizations

Theorem (Characterizations of Type \((0,0), (0, 1),\) and \((1,0))

The following characterizations are true:

\[
\left\| P_{a}^{(0,0)} \right\|_{L^2 \rightarrow L^2} = \| a \|_{\ell^\infty} ;
\]
\[
\left\| P_{a}^{(0,1)} \right\|_{L^2 \rightarrow L^2} = \left\| P_{a}^{(1,0)} \right\|_{L^2 \rightarrow L^2} \approx \| a \|_{CM} .
\]
Theorem (Characterizations of Type \((0, 0), (0, 1), \text{ and } (1, 0)\))

The following characterizations are true:

\[\left\| P^{(0,0)}_a \right\|_{L^2 \to L^2} = \| a \|_{\ell^\infty} ; \]
\[\left\| P^{(0,1)}_a \right\|_{L^2 \to L^2} = \left\| P^{(1,0)}_a \right\|_{L^2 \to L^2} \approx \| a \|_{CM} . \]

\[P^{(1,1)}_a = P^{(1,0)}_{\hat{S}(a)} + P^{(0,1)}_{\hat{S}(a)} + P^{(0,0)}_{E(a)} . \]
Classical Characterizations

Theorem (Characterizations of Type \((0, 0), (0, 1), \text{and} (1, 0)\))

The following characterizations are true:

\[
\| P_a^{(0,0)} \|_{L^2 \to L^2} = \| a \|_{\ell^\infty} ;
\]

\[
\| P_a^{(0,1)} \|_{L^2 \to L^2} = \| P_a^{(1,0)} \|_{L^2 \to L^2} \approx \| a \|_{CM} .
\]

\[
P_a^{(1,1)} = \hat{P}_{S(a)}^{(1,0)} + \hat{P}_{S(a)}^{(0,1)} + \hat{P}_{E(a)}^{(0,0)} .
\]

Theorem (Characterization of Type \((1, 1)\))

The operator norm \(\| P_a^{(1,1)} \|_{L^2 \to L^2}\) of \(P_a^{(1,1)}\) on \(L^2\) satisfies

\[
\| P_a^{(1,1)} \|_{L^2 \to L^2} \approx \| \hat{S}(a) \|_{CM} + \| E(a) \|_{\ell^\infty} .
\]
Alternate Interpretations: Testing Conditions

It is easy to see for paraproducts of type \((0, 0)\) that:

\[
\left\| P^{(0,0)}_a \right\|_{L^2
ightarrow L^2} = \| a \|_{\ell^\infty}
\]
Alternate Interpretations: Testing Conditions

It is easy to see for paraproducts of type \((0, 0)\) that:

\[
\left\| P_a^{(0,0)} \right\|_{L^2 \to L^2} = \left\| a \right\|_{\ell^\infty} = \sup_{I \in \mathcal{D}} \left\| P_a^{(0,0)} h_I \right\|_{L^2}.
\]
Alternate Interpretations: Testing Conditions

It is easy to see for paraproducts of type $(0,0)$ that:

\[\left\| P^{(0,0)}_{a} \right\|_{L^2 	o L^2} = \| a \|_{\ell^\infty} = \sup_{I \in \mathcal{D}} \left\| P^{(0,0)}_{a} h_I \right\|_{L^2}. \]

Moreover,

\[\left\| P^{(1,0)}_{a} \right\|_{L^2 	o L^2} \approx \left\| P^{(0,1)}_{a} \right\|_{L^2 	o L^2} \approx \| a \|_{CM}. \]
Alternate Interpretations: Testing Conditions

It is easy to see for paraproducts of type \((0,0)\) that:

\[
\left\| P^{(0,0)}_a \right\|_{L^2 \to L^2} = a_{\ell\infty} = \sup_{I \in \mathcal{D}} \left\| P^{(0,0)}_a h_I \right\|_{L^2}.
\]

Moreover,

\[
\left\| P^{(1,0)}_a \right\|_{L^2 \to L^2} \approx \left\| P^{(0,1)}_a \right\|_{L^2 \to L^2} \approx a_{CM} \approx \sup_{I \in \mathcal{D}} \left\| P^{(0,1)}_a h_I \right\|_{L^2}.
\]
Alternate Interpretations: Testing Conditions

It is easy to see for paraproducts of type $(0,0)$ that:

$$
\left\| P_a^{(0,0)} \right\|_{L^2 \to L^2} = \| a \|_{\ell^\infty} = \sup_{I \in D} \left\| P_a^{(0,0)} h_I \right\|_{L^2}.
$$

Moreover,

$$
\left\| P_a^{(1,0)} \right\|_{L^2 \to L^2} \approx \left\| P_a^{(0,1)} \right\|_{L^2 \to L^2} \approx \| a \|_{CM} \approx \sup_{I \in D} \left\| P_a^{(0,1)} h_I \right\|_{L^2}.
$$

These observations suggest seeking a characterization for the other compositions in terms of testing conditions on classes of functions.
Characterization of Type \((0, 1, 1, 0)\)

For a sequence \(a\), and interval \(I \in \mathcal{D}\) let \(Q_I a \equiv \sum_{J \subset I} a_J h_J\).
Characterization of Type \((0, 1, 1, 0)\)

For a sequence \(a\), and interval \(I \in \mathcal{D}\) let \(Q_I a \equiv \sum_{J \subset I} a_J h_J\).

Theorem (E. Sawyer, S. Pott, M. Reguera-Rodriguez, BDW)

\[
\|Q_I a\|_{L^2} \leq C_1 \|Q_I b\|_{L^2} \quad \text{for all } I \in \mathcal{D},
\]

where \(C_1\) and \(C_2\) are the best constants appearing above.
Characterization of Type \((0, 1, 1, 0)\)

For a sequence \(a\), and interval \(I \in \mathcal{D}\) let \(Q_I a \equiv \sum_{J \subset I} a_J h_J\).

Theorem (E. Sawyer, S. Pott, M. Reguera-Rodriguez, BDW)

The composition \(P_b^{(0, 1)} \circ P_d^{(1, 0)}\) is bounded on \(L^2\) if and only if both
Characterization of Type \((0, 1, 1, 0)\)

For a sequence \(a\), and interval \(I \in \mathcal{D}\) let \(Q_I a \equiv \sum_{J \subset I} a_J h_J\).

Theorem (E. Sawyer, S. Pott, M. Reguera-Rodriguez, BDW)

The composition \(P_b^{(0,1)} \circ P_d^{(1,0)}\) is bounded on \(L^2\) if and only if both

\[
\left\|Q_I P_b^{(0,1)} P_d^{(1,0)} (Q_I \overline{d})\right\|_{L^2}^2 \leq C_1^2 \left\|Q_I d\right\|_{L^2}^2 \quad \forall I \in \mathcal{D};
\]
Characterization of Type \((0, 1, 1, 0)\)

For a sequence \(a\), and interval \(I \in \mathcal{D}\) let \(Q_I a \equiv \sum_{J \subseteq I} a_J h_J\).

Theorem (E. Sawyer, S. Pott, M. Reguera-Rodriguez, BDW)

The composition \(P_b^{(0,1)} \circ P_d^{(1,0)}\) is bounded on \(L^2\) if and only if both

\[
\left\| Q_I P_b^{(0,1)} P_d^{(1,0)} (Q_I \overline{d}) \right\|_{L^2}^2 \leq C_1^2 \left\| Q_I d \right\|_{L^2}^2 \quad \forall I \in \mathcal{D};
\]

\[
\left\| Q_I P_d^{(0,1)} P_b^{(1,0)} (Q_I \overline{b}) \right\|_{L^2}^2 \leq C_2^2 \left\| Q_I b \right\|_{L^2}^2 \quad \forall I \in \mathcal{D}.
\]
Characterization of Type $(0, 1, 1, 0)$

For a sequence a, and interval $I \in \mathcal{D}$ let $Q_I a \equiv \sum_{J \subset I} a_J h_J$.

Theorem (E. Sawyer, S. Pott, M. Reguera-Rodriguez, BDW)

The composition $P_b^{(0,1)} \circ P_d^{(1,0)}$ is bounded on L^2 if and only if both

\[
\left\| Q_I P_b^{(0,1)} P_d^{(1,0)} (Q_I \overline{d}) \right\|_{L^2}^2 \leq C_1^2 \left\| Q_I d \right\|_{L^2}^2 \forall I \in \mathcal{D};
\]
\[
\left\| Q_I P_d^{(0,1)} P_b^{(1,0)} (Q_I \overline{b}) \right\|_{L^2}^2 \leq C_2^2 \left\| Q_I b \right\|_{L^2}^2 \forall I \in \mathcal{D}.
\]

Moreover, the norm of $P_b^{(0,1)} \circ P_d^{(1,0)}$ on L^2 satisfies

\[
\left\| P_b^{(0,1)} \circ P_d^{(1,0)} \right\|_{L^2 \rightarrow L^2} \approx C_1 + C_2
\]

where C_1 and C_2 are the best constants appearing above.
Rephrasing the Testing Conditions

We want to rephrase the testing conditions on $Q_I \overline{d}$ and $Q_I \overline{b}$:

$$
\left\| Q_I P^{(0,1)}_b P^{(1,0)}_d (Q_I \overline{d}) \right\|_{L^2}^2 \leq C_1^2 \left\| Q_I d \right\|_{L^2}^2 \quad \forall I \in D;
$$

$$
\left\| Q_I P^{(0,1)}_d P^{(1,0)}_b (Q_I \overline{b}) \right\|_{L^2}^2 \leq C_2^2 \left\| Q_I b \right\|_{L^2}^2 \quad \forall I \in D.
$$
Rephrasing the Testing Conditions

We want to rephrase the testing conditions on $Q_I \overline{d}$ and $Q_I \overline{b}$:

\[
\left\| Q_I P_b^{(0,1)} P_d^{(1,0)} (Q_I \overline{d}) \right\|_{L^2}^2 \leq C_1^2 \left\| Q_I d \right\|_{L^2}^2 \quad \forall I \in D;
\]
\[
\left\| Q_I P_d^{(0,1)} P_b^{(1,0)} (Q_I \overline{b}) \right\|_{L^2}^2 \leq C_2^2 \left\| Q_I b \right\|_{L^2}^2 \quad \forall I \in D.
\]

It isn’t hard to see that these are equivalent to the following inequalities on the sequences:

\[
\sum_{J \subset I} |b_J|^2 \frac{1}{|J|^2} \left(\sum_{L \subset J} |d_L|^2 \right)^2 \leq C_1^2 \sum_{L \subset I} |d_L|^2 \quad \forall I \in D;
\]
\[
\sum_{J \subset I} |d_J|^2 \frac{1}{|J|^2} \left(\sum_{L \subset J} |b_L|^2 \right)^2 \leq C_2^2 \sum_{L \subset I} |b_L|^2 \quad \forall I \in D.
\]
Characterization of Type (0, 1, 0, 0)

Theorem (E. Sawyer, S. Pott, M. Reguera-Rodriguez, BDW)

\[
\text{The composition } P(0, 1) \circ P(0, 0) \text{ is bounded on } L^2 \text{ if and only if both } \left\| d \right\|_{L^2} \leq C_1 \forall I \in D; \left\| Q I P(0, 0) d P(1, 0) Q I \right\|_{L^2} \leq C_2 \left\| Q I \right\|_{L^2} \forall I \in D. \]

Moreover, the norm of \(P(0, 1) \circ P(0, 0) \) on \(L^2 \) satisfies

\[
\left\| P(0, 1) \circ P(0, 0) \right\|_{L^2 \to L^2} \approx C_1 + C_2
\]

where \(C_1 \) and \(C_2 \) are the best constants appearing above.
Theorem (E. Sawyer, S. Pott, M. Reguera-Rodriguez, BDW)

The composition $P_b^{(0,1)} \circ P_d^{(0,0)}$ is bounded on L^2 if and only if both

$$\|P_b^{(0,1)} \circ P_d^{(0,0)}\|_{L^2 \to L^2} \leq C_1 + C_2 \quad \forall I \in D,$$

where C_1 and C_2 are the best constants appearing above.
Characterization of Type \((0, 1, 0, 0)\)

Theorem (E. Sawyer, S. Pott, M. Reguera-Rodriguez, BDW)

The composition \(P_{b}^{(0,1)} \circ P_{d}^{(0,0)}\) is bounded on \(L^2\) if and only if both

\[|d_I|^2 \left\| P_{b}^{(0,1)} h_I \right\|^2_{L^2} \leq C_2^2 \forall I \in \mathcal{D};\]

where \(C_1^2\) and \(C_2^2\) are the best constants appearing above.
Theorem (E. Sawyer, S. Pott, M. Reguera-Rodriguez, BDW)

The composition $P_b^{(0,1)} \circ P_d^{(0,0)}$ is bounded on L^2 if and only if both

\[
|d_I|^2 \left\| P_b^{(0,1)} h_I \right\|^2_{L^2} \leq C_1^2 \quad \forall I \in D;
\]

\[
\left\| Q_I P_d^{(0,0)} P_b^{(1,0)} Q_I \bar{b} \right\|^2_{L^2} \leq C_2^2 \left\| Q_I b \right\|^2_{L^2} \quad \forall I \in D.
\]
Characterization of Type \((0, 1, 0, 0)\)

Theorem (E. Sawyer, S. Pott, M. Reguera-Rodriguez, BDW)

The composition \(P_{(0,1)} \circ P_{(0,0)}\) is bounded on \(L^2\) if and only if both

\[
|d_I|^2 \left\| P_{(0,1)} h_I \right\|^2_{L^2} \leq C_1^2 \quad \forall I \in D;
\]

\[
\left\| Q_I P_{(0,0)} P_{(1,0)} Q_I b \right\|^2_{L^2} \leq C_2^2 \left\| Q_I b \right\|^2_{L^2} \quad \forall I \in D.
\]

Moreover, the norm of \(P_{(0,1)} \circ P_{(0,0)}\) on \(L^2\) satisfies

\[
\left\| P_{(0,1)} \circ P_{(0,0)} \right\|_{L^2 \to L^2} \approx C_1 + C_2
\]

where \(C_1\) and \(C_2\) are the best constants appearing above.
Rephrasing Testing Conditions

Again, it is possible to recast the conditions:

\[
|d_I|^2 \left\| P_b^{(0,1)} h_I \right\|_{L^2}^2 \leq C_1^2 \quad \forall I \in \mathcal{D};
\]

\[
\left\| Q_I P_d^{(0,0)} P_b^{(1,0)} Q_I b \right\|_{L^2}^2 \leq C_2^2 \left\| Q_I b \right\|_{L^2}^2 \quad \forall I \in \mathcal{D}
\]

as expressions depending only on the sequences.
Rephrasing Testing Conditions

Again, it is possible to recast the conditions:

\[
|d_I|^2 \left\| P^{(0,1)}_b h_I \right\|_{L^2}^2 \leq C_1^2 \quad \forall I \in \mathcal{D};
\]
\[
\left\| QIP^{(0,0)}_d P^{(1,0)}_b Q_I \right\|_{L^2}^2 \leq C_2^2 \left\| Q_I b \right\|_{L^2}^2 \quad \forall I \in \mathcal{D}
\]

as expressions depending only on the sequences. In particular, these are equivalent to the following inequalities:

\[
\frac{|d_I|^2}{|I|} \sum_{L \subsetneq I} |b_L|^2 \leq C_1^2 \quad \forall I \in \mathcal{D};
\]
\[
\sum_{J \subset I} \frac{|d_J|^2}{|J|} \left(\sum_{K \subset J_+} |b_K|^2 - \sum_{K \subset J_-} |b_K|^2 \right)^2 \leq C_2^2 \sum_{L \subset I} |b_L|^2 \quad \forall I \in \mathcal{D}.
\]
Preliminaries

For $I \in \mathcal{D}$ set

- The dyadic lattice \mathcal{D} is in correspondence with the Carleson Tiles.
- Let \mathcal{H} denote the upper half plane \mathbb{C}^+:
 \[\mathcal{H} = \bigcup_{I \in \mathcal{D}} T(I) \]
- For a non-negative function σ let $L^2(\mathcal{H}; \sigma)$ denote the functions that are square integrable with respect to σdA, i.e,
 \[\|f\|_{L^2(\mathcal{H}; \sigma)} \equiv \int_{\mathcal{H}} |f(z)|^2 \sigma(z) dA(z) < \infty. \]
 When $\sigma \equiv 1$, $L^2(\mathcal{H}; 1) \equiv L^2(\mathcal{H})$.
- For $f \in L^2(\mathcal{H})$, let $\mathcal{H}f \equiv \frac{f}{\|f\|_{L^2(\mathcal{H})}}$ denote the normalized function.
For $I \in \mathcal{D}$ set

$$T(I) \equiv I \times \left[\frac{|I|}{2}, |I| \right] \quad \text{(Carleson Tile)};$$
Proofs of Main Results

Preliminaries

For $I \in \mathcal{D}$ set

$$T(I) \equiv I \times \left[\frac{|I|}{2}, |I| \right] \quad \text{(Carleson Tile)};$$

$$Q(I) \equiv I \times [0, |I|] = \bigcup_{J \subset I} T(J) \quad \text{(Carleson Square)}.$$
Preliminaries

For $I \in \mathcal{D}$ set

$$T(I) \equiv I \times \left[\frac{|I|}{2}, |I| \right] \quad \text{(Carleson Tile)};$$

$$Q(I) \equiv I \times [0, |I|] = \bigcup_{J \subset I} T(J) \quad \text{(Carleson Square)}.$$

- The dyadic lattice \mathcal{D} is in correspondence with the Carleson Tiles.
Preliminaries

For $I \in \mathcal{D}$ set

$$
T(I) \equiv I \times \left[\frac{|I|}{2}, |I|\right] \quad \text{(Carleson Tile)};
$$

$$
Q(I) \equiv I \times [0, |I|] = \bigcup_{J \subset I} T(J) \quad \text{(Carleson Square)}.
$$

- The dyadic lattice \mathcal{D} is in correspondence with the Carleson Tiles.
- Let \mathcal{H} denote the upper half plane \mathbb{C}_+:
For \(I \in \mathcal{D} \) set

\[
T(I) \equiv I \times \left[\frac{|I|}{2}, |I| \right] \quad \text{(Carleson Tile)};
Q(I) \equiv I \times [0, |I|] = \bigcup_{J \subset I} T(J) \quad \text{(Carleson Square)}.
\]

- The dyadic lattice \(\mathcal{D} \) is in correspondence with the Carleson Tiles.
- Let \(\mathcal{H} \) denote the upper half plane \(\mathbb{C}_+ \): \(\mathcal{H} = \bigcup_{I \in \mathcal{D}} T(I) \).
Preliminaries

For $I \in \mathcal{D}$ set

$$T(I) \equiv I \times \left[\frac{|I|}{2}, |I| \right] \quad \text{(Carleson Tile)};$$

$$Q(I) \equiv I \times [0, |I|] = \bigcup_{J \subset I} T(J) \quad \text{(Carleson Square)}.$$

- The dyadic lattice \mathcal{D} is in correspondence with the Carleson Tiles.
- Let \mathcal{H} denote the upper half plane $\mathbb{C}_+: \mathcal{H} = \bigcup_{I \in \mathcal{D}} T(I)$.
- For a non-negative function σ let $L^2(\mathcal{H}; \sigma)$ denote the functions that are square integrable with respect to $\sigma \, dA$, i.e,

$$\|f\|_{L^2(\mathcal{H}; \sigma)}^2 \equiv \int_{\mathcal{H}} |f(z)|^2 \sigma(z) \, dA(z) < \infty.$$
Proofs of Main Results

Preliminaries

For $I \in D$ set

$$T(I) \equiv I \times \left[\frac{|I|}{2}, |I| \right] \quad \text{(Carleson Tile)};$$

$$Q(I) \equiv I \times [0, |I|] = \bigcup_{J \subset I} T(J) \quad \text{(Carleson Square)}.$$

- The dyadic lattice D is in correspondence with the Carleson Tiles.
- Let \mathcal{H} denote the upper half plane $\mathbb{C}_+: \mathcal{H} = \bigcup_{I \in D} T(I)$.
- For a non-negative function σ let $L^2(\mathcal{H}; \sigma)$ denote the functions that are square integrable with respect to $\sigma \, dA$, i.e.,

$$\|f\|_{L^2(\mathcal{H}; \sigma)}^2 \equiv \int_{\mathcal{H}} |f(z)|^2 \sigma(z) \, dA(z) < \infty.$$

When $\sigma \equiv 1$, $L^2(\mathcal{H}; 1) \equiv L^2(\mathcal{H})$.

\[\text{B. D. Wick (Georgia Tech)}\]
Preliminaries

For $I \in \mathcal{D}$ set

$$
T(I) \equiv I \times \left[\frac{|I|}{2}, |I| \right] \quad \text{(Carleson Tile)};
$$

$$
Q(I) \equiv I \times [0, |I|] = \bigcup_{J \subset I} T(J) \quad \text{(Carleson Square)}.
$$

- The dyadic lattice \mathcal{D} is in correspondence with the Carleson Tiles.
- Let \mathcal{H} denote the upper half plane $\mathbb{C}_+: \mathcal{H} = \bigcup_{I \in \mathcal{D}} T(I)$.
- For a non-negative function σ let $L^2(\mathcal{H}; \sigma)$ denote the functions that are square integrable with respect to $\sigma \, dA$, i.e,

$$
\|f\|_{L^2(\mathcal{H}; \sigma)}^2 \equiv \int_{\mathcal{H}} |f(z)|^2 \sigma(z) \, dA(z) < \infty.
$$

When $\sigma \equiv 1$, $L^2(\mathcal{H}; 1) \equiv L^2(\mathcal{H})$.
- For $f \in L^2(\mathcal{H})$, let $\tilde{f} \equiv \frac{f}{\|f\|_{L^2(\mathcal{H})}}$ denote the normalized function.
Functions Constant on Tiles

Let $L^2_c(\mathcal{H}) \subset L^2(\mathcal{H})$ be the subspace of functions which are constant on tiles.
Functions Constant on Tiles

Let $L^2_c(\mathcal{H}) \subset L^2(\mathcal{H})$ be the subspace of functions which are constant on tiles. Namely, $f : \mathcal{D} \to \mathbb{C}$

$$f = \sum_{I \in \mathcal{D}} f_I 1_{T(I)}.$$

Easy to show:

* \{ 1_{T(I)} \} \quad I \in \mathcal{D} is an orthonormal basis of $L^2_c(\mathcal{H})$;
* \{ 1_{Q(I)} \} \quad I \in \mathcal{D} is an Riesz basis of $L^2_c(\mathcal{H})$.
Let $L^2_c(\mathcal{H}) \subset L^2(\mathcal{H})$ be the subspace of functions which are constant on tiles. Namely, $f : \mathcal{D} \to \mathbb{C}$

$$f = \sum_{I \in \mathcal{D}} f_I 1_{T(I)}.$$

Then

$$L^2_c(\mathcal{H}) \equiv \left\{ f : \mathcal{D} \to \mathbb{C} : \sum_{I \in \mathcal{D}} |f(I)|^2 |I|^2 < \infty \right\};$$
Functions Constant on Tiles

Let $L^2_c(\mathcal{H}) \subset L^2(\mathcal{H})$ be the subspace of functions which are constant on tiles. Namely, $f : \mathcal{D} \rightarrow \mathbb{C}$

$$f = \sum_{I \in \mathcal{D}} f_I 1_{T(I)}.$$

Then

$$L^2_c(\mathcal{H}) \equiv \left\{ f : \mathcal{D} \rightarrow \mathbb{C} : \sum_{I \in \mathcal{D}} |f(I)|^2 |I|^2 < \infty \right\};$$

$$\|f\|_{L^2_c(\mathcal{H})}^2 \equiv \frac{1}{2} \sum_{I \in \mathcal{D}} |f(I)|^2 |I|^2.$$
Functions Constant on Tiles

Let $L^2_c(\mathcal{H}) \subset L^2(\mathcal{H})$ be the subspace of functions which are constant on tiles. Namely, $f : \mathcal{D} \to \mathbb{C}$

$$f = \sum_{I \in \mathcal{D}} f_I \mathbf{1}_{T(I)}.$$

Then

$$L^2_c(\mathcal{H}) \equiv \left\{ f : \mathcal{D} \to \mathbb{C} : \sum_{I \in \mathcal{D}} |f(I)|^2 |I|^2 < \infty \right\};$$

$$\|f\|_{L^2_c(\mathcal{H})}^2 \equiv \frac{1}{2} \sum_{I \in \mathcal{D}} |f(I)|^2 |I|^2.$$

Easy to show:

$$\left\{ \tilde{\mathbf{1}}_{T(I)} \right\}_{I \in \mathcal{D}}$$

is an orthonormal basis of $L^2_c(\mathcal{H})$;

$$\left\{ \tilde{\mathbf{1}}_{Q(I)} \right\}_{I \in \mathcal{D}}$$

is an Riesz basis of $L^2_c(\mathcal{H})$.
The Gram Matrix of $P_{b}^{(0,1)} \circ P_{d}^{(1,0)}$

Let $S_{P_{b}^{(0,1)} \circ P_{d}^{(1,0)}} = [G_{I,J}]_{I,J \in D}$ be the Gram matrix of the operator $P_{b}^{(0,1)} \circ P_{d}^{(1,0)}$ relative to the Haar basis $\{h_{I}\}_{I \in D}$.
The Gram Matrix of $P_b^{(0,1)} \circ P_d^{(1,0)}$

Let $\mathcal{G}_{P_b^{(0,1)} \circ P_d^{(1,0)}} = [G_{I,J}]_{I,J \in D}$ be the Gram matrix of the operator $P_b^{(0,1)} \circ P_d^{(1,0)}$ relative to the Haar basis $\{h_I\}_{I \in D}$. A simple computation shows that it has entries:

$$G_{I,J} = \left\langle P_b^{(0,1)} \circ P_d^{(1,0)} h_J, h_I \right\rangle_{L^2}$$
Let $G_{(0,1)\circ(1,0)} = [G_{I,J}]_{I,J\in D}$ be the Gram matrix of the operator $P_{b}^{(0,1)} \circ P_{d}^{(1,0)}$ relative to the Haar basis $\{h_{I}\}_{I\in D}$. A simple computation show that it has entries:

$$G_{I,J} = \langle P_{b}^{(0,1)} \circ P_{d}^{(1,0)} h_{J}, h_{I} \rangle_{L^2} = \langle P_{d}^{(1,0)} h_{J}, P_{b}^{(1,0)} h_{I} \rangle_{L^2}$$
The Gram Matrix of $P_{b}^{(0,1)} \circ P_{d}^{(1,0)}$

Let $\mathcal{G}_{P_{b}^{(0,1)} \circ P_{d}^{(1,0)}} = [G_{I,J}]_{I,J \in D}$ be the Gram matrix of the operator $P_{b}^{(0,1)} \circ P_{d}^{(1,0)}$ relative to the Haar basis $\{h_{I}\}_{I \in D}$. A simple computation show that it has entries:

$$G_{I,J} = \left\langle P_{b}^{(0,1)} \circ P_{d}^{(1,0)} h_{J}, h_{I} \right\rangle_{L^{2}} = \left\langle P_{d}^{(1,0)} h_{J}, P_{b}^{(1,0)} h_{I} \right\rangle_{L^{2}}$$

$$= \left\langle d_{J} h_{J}^{1}, b_{I} h_{I}^{1} \right\rangle_{L^{2}}$$
The Gram Matrix of $P_{b}^{(0,1)} \circ P_{d}^{(1,0)}$

Let $G_{P_{b}^{(0,1)} \circ P_{d}^{(1,0)}} = [G_{I,J}]_{I,J \in \mathcal{D}}$ be the Gram matrix of the operator $P_{b}^{(0,1)} \circ P_{d}^{(1,0)}$ relative to the Haar basis $\{h_{I}\}_{I \in \mathcal{D}}$. A simple computation show that it has entries:

$$G_{I,J} = \langle P_{b}^{(0,1)} \circ P_{d}^{(1,0)} h_{J}, h_{I} \rangle_{L^{2}} = \langle P_{d}^{(1,0)} h_{J}, P_{b}^{(1,0)} h_{I} \rangle_{L^{2}}$$

$$= \langle d_{J} h_{J}^{1}, b_{I} h_{I}^{1} \rangle_{L^{2}}$$

$$= \overline{b_{I}} d_{J} \frac{|I \cap J|}{|I||J|}$$
The Gram Matrix of $P_b^{(0,1)} \circ P_d^{(1,0)}$

Let $G_{P_b^{(0,1)} \circ P_d^{(1,0)}} = [G_{I,J}]_{I,J \in D}$ be the Gram matrix of the operator $P_b^{(0,1)} \circ P_d^{(1,0)}$ relative to the Haar basis $\{h_I\}_{I \in D}$. A simple computation show that it has entries:

\[
G_{I,J} = \langle P_b^{(0,1)} \circ P_d^{(1,0)} h_J, h_I \rangle_{L^2} = \langle P_d^{(1,0)} h_J, P_b^{(1,0)} h_I \rangle_{L^2} = \langle d_J h_J^1, b_I h_I^1 \rangle_{L^2}
\]

\[
= \overline{b_I} d_J \frac{|I \cap J|}{|I||J|} = \begin{cases}
\overline{b_I} d_J \frac{1}{|I|} & \text{if } J \subset I \\
\overline{b_I} d_J \frac{1}{|J|} & \text{if } I \subset J \\
0 & \text{if } I \cap J = \emptyset.
\end{cases}
\]
The Gram Matrix of $P^{(0,1)}_b \circ P^{(1,0)}_d$

Let $\mathcal{G}_{P^{(0,1)}_b \circ P^{(1,0)}_d} = [G_{I,J}]_{I,J \in D}$ be the Gram matrix of the operator $P^{(0,1)}_b \circ P^{(1,0)}_d$ relative to the Haar basis $\{h_I\}_{I \in D}$. A simple computation show that it has entries:

$$G_{I,J} = \langle P^{(0,1)}_b \circ P^{(1,0)}_d h_J, h_I \rangle_{L^2} = \langle P^{(1,0)}_d h_J, P^{(1,0)}_b h_I \rangle_{L^2} = \langle d_J h^1_J, b_I h^1_I \rangle_{L^2}$$

$$= \overline{b_I} d_J \frac{|I \cap J|}{|I| |J|} = \begin{cases} \overline{b_I} d_J \frac{1}{|I|} & \text{if } J \subset I \\ \overline{b_I} d_J \frac{1}{|J|} & \text{if } I \subset J \\ 0 & \text{if } I \cap J = \emptyset. \end{cases}$$

Idea: Construct $T^{(0,1,1,0)}_{b,d} : L^2_c(\mathcal{H}) \to L^2_c(\mathcal{H})$ that has the same Gram matrix as $P^{(0,1)}_b \circ P^{(1,0)}_d$, but with respect to the basis $\{\tilde{1}_{T(I)}\}_{I \in D}$.
The Operator $T_{b,d}^{(0,1,1,0)}$ and it Gram Matrix

For $\lambda \in \mathbb{R}$ and $a = \{a_I\}_{I \in \mathcal{D}}$ the multiplication operator M_λ^a is defined on basis elements $\tilde{1}_{T(K)}$ by

$$M_\lambda^a \tilde{1}_{T(K)} \equiv a_K |K|^\lambda \tilde{1}_{T(K)}.$$
The Operator $T_{b,d}^{(0,1,1,0)}$ and it Gram Matrix

For $\lambda \in \mathbb{R}$ and $a = \{a_I\}_{I \in \mathcal{D}}$ the multiplication operator \mathcal{M}_a^λ is defined on basis elements $\tilde{1}_{T(K)}$ by

$$\mathcal{M}_a^\lambda \tilde{1}_{T(K)} \equiv a_K |K|^\lambda \tilde{1}_{T(K)}.$$

Define an operator $T_{b,d}^{(0,1,1,0)}$ on $L_c^2(\mathcal{H})$ by

$$T_{b,d}^{(0,1,1,0)} \equiv \mathcal{M}_b^0 \left(\sum_{K \in \mathcal{D}} \tilde{1}_{T(K)} \otimes \tilde{1}_{Q(K)} \right) \mathcal{M}_d^{-1}.$$
The Operator $T_{b,d}^{(0,1,1,0)}$ and it Gram Matrix

For $\lambda \in \mathbb{R}$ and $a = \{a_I\}_{I \in \mathcal{D}}$ the multiplication operator \mathcal{M}_a^λ is defined on basis elements $\tilde{1}_{T(K)}$ by

$$\mathcal{M}_a^\lambda \tilde{1}_{T(K)} \equiv a_K |K|^\lambda \tilde{1}_{T(K)}.$$

Define an operator $T_{b,d}^{(0,1,1,0)}$ on $L^2_c(\mathcal{H})$ by

$$T_{b,d}^{(0,1,1,0)} \equiv \mathcal{M}_b^0 \left(\sum_{K \in \mathcal{D}} \tilde{1}_{T(K)} \otimes \tilde{1}_{Q(K)} \right) \mathcal{M}_d^{-1}.$$

Then the Gram matrix $G_{T_{b,d}^{(0,1,1,0)}} = [G_{I,J}]_{I,J \in \mathcal{D}}$ of $T_{b,d}^{(0,1,1,0)}$ relative to the basis $\{\tilde{1}_{T(I)}\}_{I \in \mathcal{D}}$ has entries

$$G_{I,J} = \left\langle T_{b,d}^{(0,1,1,0)} \tilde{1}_{T(J)}, \tilde{1}_{T(I)} \right\rangle_{L^2(\mathcal{H})}$$.
The Operator $\mathbf{T}_{b,d}^{(0,1,1,0)}$ and it Gram Matrix

For $\lambda \in \mathbb{R}$ and $a = \{a_I\}_{I \in \mathcal{D}}$ the multiplication operator \mathcal{M}_a^{λ} is defined on basis elements $\tilde{1}_{T(K)}$ by

$$\mathcal{M}_a^{\lambda} \tilde{1}_{T(K)} \equiv a_K |K|^\lambda \tilde{1}_{T(K)}.$$

Define an operator $\mathbf{T}_{b,d}^{(0,1,1,0)}$ on $L^2_c(\mathcal{H})$ by

$$\mathbf{T}_{b,d}^{(0,1,1,0)} \equiv \mathcal{M}_b^0 \left(\sum_{K \in \mathcal{D}} \tilde{1}_{T(K)} \otimes \tilde{1}_{Q(K)} \right) \mathcal{M}_d^{-1}.$$

Then the Gram matrix $G_{\mathbf{T}_{b,d}^{(0,1,1,0)}} = [G_{I,J}]_{I,J \in \mathcal{D}}$ of $\mathbf{T}_{b,d}^{(0,1,1,0)}$ relative to the basis $\{\tilde{1}_{T(I)}\}_{I \in \mathcal{D}}$ has entries

$$G_{I,J} = \left< \mathbf{T}_{b,d}^{(0,1,1,0)} \tilde{1}_{T(J)}, \tilde{1}_{T(I)} \right>_{L^2(\mathcal{H})} = \overline{b_I d_J} \sqrt{2} |Q(I) \cap T(J)| \frac{|I| |J|}{|I||J|^2}$$
The Operator $T_{b,d}^{(0,1,1,0)}$ and it Gram Matrix

For $\lambda \in \mathbb{R}$ and $a = \{a_I\}_{I \in \mathcal{D}}$ the multiplication operator \mathcal{M}_a^λ is defined on basis elements $\mathcal{I}_T(K)$ by

$$\mathcal{M}_a^\lambda \mathcal{I}_T(K) \equiv a_K |K|^\lambda \mathcal{I}_T(K).$$

Define an operator $T_{b,d}^{(0,1,1,0)}$ on $L^2_c(\mathcal{H})$ by

$$T_{b,d}^{(0,1,1,0)} \equiv \mathcal{M}_0^b \left(\sum_{K \in \mathcal{D}} \mathcal{I}_T(K) \otimes \mathcal{I}_Q(K) \right) \mathcal{M}_d^{-1}.$$

Then the Gram matrix $\mathcal{G}_T^{(0,1,1,0)} = [G_{I,J}]_{I,J \in \mathcal{D}}$ of $T_{b,d}^{(0,1,1,0)}$ relative to the basis $\{\mathcal{I}_T(I)\}_{I \in \mathcal{D}}$ has entries

$$G_{I,J} = \left\langle T_{b,d}^{(0,1,1,0)} \mathcal{I}_T(J), \mathcal{I}_T(I) \right\rangle_{L^2(\mathcal{H})} = \frac{b_I d_J}{\sqrt{2} |I| |J|^2} \frac{1}{|I|} \frac{1}{|J|} \begin{cases} \frac{1}{|I|} & \text{if } J \subset I \\ 0 & \text{if } J \nsubseteq I \end{cases}.$$
Connecting the Problem to a Two Weight Inequality

Up to an absolute constant, $\mathcal{G}_{T}^{(0,1,1,0)}$ matches $\mathcal{G}_{P}^{(0,1)} \circ P^{(1,0)}$ in the lower triangle where $J \subset I$.
Connecting the Problem to a Two Weight Inequality

Up to an absolute constant, $\mathcal{G}_{T_{b,d}^{(0,1,1,0)}}$ matches $\mathcal{G}_{P_{b}^{(0,1)} \circ P_{d}^{(1,0)}}$ in the lower triangle where $J \subset I$. So,

$$
\| P_{b}^{(0,1)} \circ P_{d}^{(1,0)} \|_{L^{2} \to L^{2}} \approx \| T_{b,d}^{(0,1,1,0)} \|_{L^{2}(\mathcal{H}) \to L^{2}(\mathcal{H})} + \| T_{d,b}^{(0,1,1,0)} \|_{L^{2}(\mathcal{H}) \to L^{2}(\mathcal{H})} .
$$
Connecting the Problem to a Two Weight Inequality

Up to an absolute constant, $G_{T_{b,d}^{(0,1,1,0)}}$ matches $G_{P_{b}^{(0,1)} \circ P_{d}^{(1,0)}}$ in the lower triangle where $J \subset I$. So,

$$\left\| P_{b}^{(0,1)} \circ P_{d}^{(1,0)} \right\|_{L^2 \to L^2} \approx \left\| T_{b,d}^{(0,1,1,0)} \right\|_{L^2(\mathcal{H}) \to L^2(\mathcal{H})} + \left\| T_{d,b}^{(0,1,1,0)} \right\|_{L^2(\mathcal{H}) \to L^2(\mathcal{H})}.$$

The inequality we wish to characterize is

$$\left\| \mathcal{M}_{b}^{0} \mathcal{M}_{d}^{-1} f \right\|_{L^2_{c}(\mathcal{H})} = \left\| T_{b,d}^{(0,1,1,0)} f \right\|_{L^2_{c}(\mathcal{H})} \lesssim \| f \|_{L^2_{c}(\mathcal{H})}.$$
Connecting the Problem to a Two Weight Inequality

Up to an absolute constant, $\mathcal{G}_{T_{b,d}^{(0,1,1,0)}}$ matches $\mathcal{G}_{P_{b}^{(0,1)}\circ P_{d}^{(1,0)}}$ in the lower triangle where $J \subset I$. So,

$$
\left\| P_{b}^{(0,1)} \circ P_{d}^{(1,0)} \right\|_{L^2 \to L^2} \approx \left\| T_{b,d}^{(0,1,1,0)} \right\|_{L^2(H) \to L^2(H)} + \left\| T_{d,b}^{(0,1,1,0)} \right\|_{L^2(H) \to L^2(H)}.
$$

The inequality we wish to characterize is

$$
\left\| M_{b}^{0} \mathcal{U} M_{d}^{-1} f \right\|_{L_{c}^{2}(H)} = \left\| T_{b,d}^{(0,1,1,0)} f \right\|_{L_{c}^{2}(H)} \lesssim \left\| f \right\|_{L_{c}^{2}(H)}.
$$

Define \mathcal{U} on $L_{c}^{2}(H)$, where

$$
\mathcal{U} \equiv \sum_{K \in \mathcal{D}} \mathbf{1}_{T(K)} \otimes \mathbf{1}_{Q(K)}.
$$
Connecting the Problem to a Two Weight Inequality

Up to an absolute constant, $\mathcal{G}_{T^{(0,1,1,0)}_{b,d}}$ matches $\mathcal{G}_{P^{(0,1)}_{b} \circ P^{(1,0)}_{d}}$ in the lower triangle where $J \subset I$. So,

$$
\left\| P^{(0,1)}_{b} \circ P^{(1,0)}_{d} \right\|_{L^2 \to L^2} \approx \left\| T^{(0,1,1,0)}_{b,d} \right\|_{L^2(\mathcal{H}) \to L^2(\mathcal{H})} + \left\| T^{(0,1,1,0)}_{d,b} \right\|_{L^2(\mathcal{H}) \to L^2(\mathcal{H})}.
$$

The inequality we wish to characterize is

$$
\left\| \mathcal{M}^{0}_{b} U \mathcal{M}^{-1}_{d} f \right\|_{L^2(\mathcal{H})} = \left\| T^{(0,1,1,0)}_{b,d} f \right\|_{L^2(\mathcal{H})} \lesssim \left\| f \right\|_{L^2(\mathcal{H})}.
$$

Define U on $L^2(\mathcal{H})$, where

$$
U \equiv \sum_{K \in \mathcal{D}} \tilde{1}_{T(K)} \otimes \tilde{1}_{Q(K)}.
$$

For appropriate choice of weights σ and w on \mathcal{H} the desired estimate is simply:

$$
\left\| U (\sigma k) \right\|_{L^2(\mathcal{H};w)} \lesssim \left\| k \right\|_{L^2(\mathcal{H};\sigma)}.
$$

A Two Weight Theorem for Positive Operators

Theorem (S. Pott, E. Sawyer, M. Reguera-Rodriguez, BDW)

Let w and σ be non-negative weights on \mathcal{H}. Then

$$U(\sigma \cdot) : L^2(\mathcal{H}; \sigma) \rightarrow L^2(\mathcal{H}; w)$$

is bounded if and only if the following testing condition holds:

$$\left\| 1_{Q(I)} U \left(\sigma 1_{Q(I)} \right) \right\|_{L^2(\mathcal{H}; w)}^2 \leq C_0^2 \left\| 1_{Q(I)} \right\|_{L^2(\mathcal{H}; \sigma)}^2.$$
A Two Weight Theorem for Positive Operators

Theorem (S. Pott, E. Sawyer, M. Reguera-Rodriguez, BDW)

Let w and σ be non-negative weights on \mathcal{H}. Then

$$U(\sigma \cdot) : L^2(\mathcal{H}; \sigma) \to L^2(\mathcal{H}; w)$$

is bounded if and only if the following testing condition holds:

$$\left\| \mathbf{1}_{Q(I)} U (\sigma \mathbf{1}_{Q(I)}) \right\|_{L^2(\mathcal{H}; w)}^2 \leq C_0^2 \left\| \mathbf{1}_{Q(I)} \right\|_{L^2(\mathcal{H}; \sigma)}^2.$$

- The proof of this Theorem is a translation of Sawyer’s proof strategy for two weight inequalities for positive operators.
A Two Weight Theorem for Positive Operators

Theorem (S. Pott, E. Sawyer, M. Reguera-Rodriguez, BDW)

Let w and σ be non-negative weights on \mathcal{H}. Then

$$U(\sigma \cdot) : L^2(\mathcal{H}; \sigma) \to L^2(\mathcal{H}; w)$$

is bounded if and only if the following testing condition holds:

$$\left\| \mathbf{1}_{Q(I)} U \left(\sigma \mathbf{1}_{Q(I)} \right) \right\|_{L^2(\mathcal{H}; w)}^2 \leq C_0^2 \left\| \mathbf{1}_{Q(I)} \right\|_{L^2(\mathcal{H}; \sigma)}^2.$$

- The proof of this Theorem is a translation of Sawyer’s proof strategy for two weight inequalities for positive operators.
- Choosing $w \equiv \sum_{I \in \mathcal{D}} |b_I|^2 \mathbf{1}_{T(I)}$ and $\sigma \equiv \sum_{I \in \mathcal{D}} \frac{|d_I|^2}{|I|^2} \mathbf{1}_{T(I)}$ (and unraveling the definitions) gives the forward testing condition.
A Two Weight Theorem for Positive Operators

Theorem (S. Pott, E. Sawyer, M. Reguera-Rodriguez, BDW)

Let w and σ be non-negative weights on \mathcal{H}. Then

$$
\mathbb{U}(\sigma \cdot) : L^2(\mathcal{H}; \sigma) \rightarrow L^2(\mathcal{H}; w)
$$

is bounded if and only if the following testing condition holds:

$$
\left\| \mathbf{1}_{Q(I)} \mathbb{U} \left(\sigma \mathbf{1}_{Q(I)} \right) \right\|_{L^2(\mathcal{H}; w)}^2 \leq C_0^2 \left\| \mathbf{1}_{Q(I)} \right\|_{L^2(\mathcal{H}; \sigma)}^2.
$$

- The proof of this Theorem is a translation of Sawyer’s proof strategy for two weight inequalities for positive operators.
- Choosing $w \equiv \sum_{I \in \mathcal{D}} |b_I|^2 \mathbf{1}_{T(I)}$ and $\sigma \equiv \sum_{I \in \mathcal{D}} \frac{|d_I|^2}{|I|^2} \mathbf{1}_{T(I)}$ (and unraveling the definitions) gives the forward testing condition.
- Appropriate choice of w and σ will then provide the backward testing condition when studying $T_{d,b}^{(0,1,1,0)}$.
The Gram Matrix of $P^{(0,1)}_b \circ P^{(0,0)}_d$

Let $\mathcal{G}_{P^{(0,1)}_b \circ P^{(0,0)}_d} = [G_{I,J}]_{I,J \in \mathcal{D}}$ be the Gram matrix of the operator $P^{(0,1)}_b \circ P^{(0,0)}_d$ relative to the Haar basis $\{h_I\}_{I \in \mathcal{D}}$.

A simple computation shows its entries are:

$$G_{I,J} = P^{(0,1)}_b \circ P^{(0,0)}_d \langle h_J, h_I \rangle_{L^2} = P^{(1,0)}_b \langle h_J, P^{(0,0)}_d h_I \rangle_{L^2} = d_{1(I)} \delta_{J,I} = \begin{cases} b_{I}d_{J} - \frac{1}{\sqrt{|J|}} & \text{if } I \subset J \\ b_{I}d_{J} + \frac{1}{\sqrt{|J|}} & \text{if } I \subset J \\ 0 & \text{if } J \subset I \text{ or } I \cap J = \emptyset \end{cases}.$$
The Gram Matrix of $P_b^{(0,1)} \circ P_d^{(0,0)}$

Let $G_{P_b^{(0,1)} \circ P_d^{(0,0)}} = [G_{I,J}]_{I,J \in \mathcal{D}}$ be the Gram matrix of the operator $P_b^{(0,1)} \circ P_d^{(0,0)}$ relative to the Haar basis $\{h_I\}_{I \in \mathcal{D}}$. A simple computation shows its entries are:

$$G_{I,J} = \left\langle P_b^{(0,1)} \circ P_d^{(0,0)} h_J, h_I \right\rangle_{L^2}$$
The Gram Matrix of $P_{b}^{(0,1)} \circ P_{d}^{(0,0)}$

Let $G_{P_{b}^{(0,1)} \circ P_{d}^{(0,0)}} = [G_{I,J}]_{I,J \in D}$ be the Gram matrix of the operator $P_{b}^{(0,1)} \circ P_{d}^{(0,0)}$ relative to the Haar basis $\{h_{I}\}_{I \in D}$. A simple computation shows its entries are:

$$G_{I,J} = \left\langle P_{b}^{(0,1)} \circ P_{d}^{(0,0)} h_{J}, h_{I} \right\rangle_{L^2} = \left\langle P_{d}^{(0,0)} h_{J}, P_{b}^{(1,0)} h_{I} \right\rangle_{L^2}.$$
The Gram Matrix of $P_b^{(0,1)} \circ P_d^{(0,0)}$

Let $\mathcal{G}_{P_b^{(0,1)} \circ P_d^{(0,0)}} = [G_I,J]_{I,J \in \mathcal{D}}$ be the Gram matrix of the operator $P_b^{(0,1)} \circ P_d^{(0,0)}$ relative to the Haar basis $\{h_I\}_{I \in \mathcal{D}}$. A simple computation shows its entries are:

$$G_{I,J} = \langle P_b^{(0,1)} \circ P_d^{(0,0)} h_J, h_I \rangle_{L^2} = \langle P_d^{(0,0)} h_J, P_b^{(1,0)} h_I \rangle_{L^2}$$

$$= \langle d_J h_J, b_I h_I^1 \rangle_{L^2}$$
The Gram Matrix of $P_b^{(0,1)} \circ P_d^{(0,0)}$

Let $G_{P_b^{(0,1)} \circ P_d^{(0,0)}} = [G_{I,J}]_{I,J \in \mathcal{D}}$ be the Gram matrix of the operator $P_b^{(0,1)} \circ P_d^{(0,0)}$ relative to the Haar basis $\{h_I\}_{I \in \mathcal{D}}$. A simple computation shows its entries are:

$$G_{I,J} = \left\langle P_b^{(0,1)} \circ P_d^{(0,0)} h_J, h_I \right\rangle_{L^2} = \left\langle P_d^{(0,0)} h_J, P_b^{(1,0)} h_I \right\rangle_{L^2}$$

$$= \left\langle d_J h_J, b_I h_I^1 \right\rangle_{L^2}$$

$$= \overline{b_I} d_J h_I^1 (J)$$
The Gram Matrix of $P_{b}^{(0,1)} \circ P_{d}^{(0,0)}$

Let $G_{P_{b}^{(0,1)} \circ P_{d}^{(0,0)}} = [G_{I,J}]_{I,J \in D}$ be the Gram matrix of the operator $P_{b}^{(0,1)} \circ P_{d}^{(0,0)}$ relative to the Haar basis $\{h_{I}\}_{I \in D}$. A simple computation shows its entries are:

$$G_{I,J} = \langle P_{b}^{(0,1)} \circ P_{d}^{(0,0)} h_{J}, h_{I} \rangle_{L^{2}} = \langle P_{d}^{(0,0)} h_{J}, P_{b}^{(1,0)} h_{I} \rangle_{L^{2}} = \langle d_{J} h_{J}, b_{I} h_{I}^{1} \rangle_{L^{2}}$$

$$= \begin{cases} \overline{b_{I}} d_{J} \frac{-1}{\sqrt{|J|}} & \text{if } I \subset J_- \\ \overline{b_{I}} d_{J} \frac{1}{\sqrt{|J|}} & \text{if } I \subset J_+ \\ 0 & \text{if } J \subset I \text{ or } I \cap J = \emptyset. \end{cases}$$
The Gram Matrix of $P_{b}^{(0,1)} \circ P_{d}^{(0,0)}$

Let $G_{P_{b}^{(0,1)} \circ P_{d}^{(0,0)}} = [G_{I,J}]_{I,J \in \mathcal{D}}$ be the Gram matrix of the operator $P_{b}^{(0,1)} \circ P_{d}^{(0,0)}$ relative to the Haar basis $\{h_{I}\}_{I \in \mathcal{D}}$. A simple computation shows its entries are:

$$G_{I,J} = \left\langle P_{b}^{(0,1)} \circ P_{d}^{(0,0)} h_{J}, h_{I} \right\rangle_{L^{2}} = \left\langle P_{d}^{(0,0)} h_{J}, P_{b}^{(1,0)} h_{I} \right\rangle_{L^{2}} = \left\langle d_{J} h_{J}, b_{I} h_{I}^{1} \right\rangle_{L^{2}}$$

$$= \overline{b_{I}} d_{J} \left\langle h_{J}^{\dagger}, h_{I} \right\rangle_{L^{2}} = \begin{cases} \overline{b_{I}} d_{J} \left(\frac{-1}{\sqrt{|J|}} \right) & \text{if } I \subset J_{-} \\ \overline{b_{I}} d_{J} \left(\frac{1}{\sqrt{|J|}} \right) & \text{if } I \subset J_{+} \\ 0 & \text{if } J \subset I \text{ or } I \cap J = \emptyset. \end{cases}$$

Idea: Construct $T^{(0,1,0,0)}_{b,d} : L^{2}_{c}(\mathcal{H}) \rightarrow L^{2}_{c}(\mathcal{H})$ that has the same Gram matrix as $P_{b}^{(0,1)} \circ P_{d}^{(0,0)}$, but with respect to the basis $\{\widetilde{1}_{T(I)}\}_{I \in \mathcal{D}}$.
The Operator $\mathcal{T}_{b,d}^{(0,1,0,0)}$

Now consider the operator $\mathcal{T}_{b,d}^{(0,1,0,0)}$ defined by

$$
\mathcal{T}_{b,d}^{(0,1,0,0)} \equiv \mathcal{M}_{\frac{1}{b}}^{-1} \left(\sum_{K \in \mathcal{D}} \tilde{1}_{Q_{\pm}(K)} \otimes \tilde{1}_{T(K)} \right) \mathcal{M}_{\frac{1}{d}}^{\frac{1}{2}}.
$$
The Operator $T_{b,d}^{(0,1,0,0)}$

Now consider the operator $T_{b,d}^{(0,1,0,0)}$ defined by

$$T_{b,d}^{(0,1,0,0)} \equiv \mathcal{M}^{-1}_b \left(\sum_{K \in \mathcal{D}} \tilde{1}_{Q_\pm(K)} \otimes \tilde{1}_{T(K)} \right) \mathcal{M}_d^{1/2}.$$

Here

$$1_{Q_\pm(K)} \equiv - \sum_{L \subset K_-} 1_{T(L)} + \sum_{L \subset K_+} 1_{T(L)}.$$
The Operator $T_{b,d}^{(0,1,0,0)}$

Now consider the operator $T_{b,d}^{(0,1,0,0)}$ defined by

$$T_{b,d}^{(0,1,0,0)} \equiv M_{b}^{-1} \left(\sum_{K \in \mathcal{D}} \tilde{1}_{Q_{\pm}(K)} \otimes \tilde{1}_{T(K)} \right) M_{d}^{\frac{1}{2}}.$$

Here

$$1_{Q_{\pm}(K)} \equiv - \sum_{L \subset K_{-}} 1_{T(L)} + \sum_{L \subset K_{+}} 1_{T(L)}.$$

A straightforward computation shows

$$\left\| 1_{Q_{\pm}(K)} \right\|_{L^2(\mathcal{H})} = \frac{|K|}{2};$$
The Operator $T_{b,d}^{(0,1,0,0)}$

Now consider the operator $T_{b,d}^{(0,1,0,0)}$ defined by

$$T_{b,d}^{(0,1,0,0)} \equiv \mathcal{M}_{b}^{-1} \left(\sum_{K \in \mathcal{D}} \tilde{1}_{Q_{\pm}(K)} \otimes \tilde{1}_{T(K)} \right) \mathcal{M}_{d}^{\frac{1}{2}}.$$

Here

$$1_{Q_{\pm}(K)} \equiv - \sum_{L \subset K} 1_{T(L)} + \sum_{L \subset K} 1_{T(L)}.$$

A straightforward computation shows

$$\left\| 1_{Q_{\pm}(K)} \right\|_{L^{2}(\mathcal{H})} = \frac{|K|}{2};$$

$$\mathcal{M}_{a}^{\lambda} 1_{Q_{\pm}(K)} = - \sum_{L \subset K_{-}} a_{L} |L|^\lambda 1_{T(L)} + \sum_{L \subset K_{+}} a_{L} |L|^\lambda 1_{T(L)}.$$
The Gram Matrix for the Operator $T_{b,d}^{(0,1,0,0)}$

The Gram matrix $G_{T_{b,d}^{(0,1,0,0)}} = [G_{I,J}]_{I,J \in \mathcal{D}}$ of $T_{b,d}^{(0,1,0,0)}$ relative to the basis $\{\tilde{1}_{T(I)}\}_{I \in \mathcal{D}}$ then has entries given by

$$G_{I,J} = \left\langle T_{b,d}^{(0,1,0,0)} \tilde{1}_{T(J)} , \tilde{1}_{T(I)} \right\rangle_{L^2(\mathcal{H})}$$
The Gram Matrix for the Operator $T_{b,d}^{(0,1,0,0)}$

The Gram matrix $\mathcal{G}_{T_{b,d}^{(0,1,0,0)}} = [G_{I,J}]_{I,J \in \mathcal{D}}$ of $T_{b,d}^{(0,1,0,0)}$ relative to the basis $\{\tilde{1}_{T(I)}\}_{I \in \mathcal{D}}$ then has entries given by

$$G_{I,J} = \left\langle T_{b,d}^{(0,1,0,0)} \tilde{1}_{T(J)}, \tilde{1}_{T(I)} \right\rangle_{L^2(\mathcal{H})}$$

$$= \sqrt{2} \begin{cases}
 -\overline{b_I} d_J |J|^{-1/2} & \text{if} \quad I \subset J_-
 \\
 \overline{b_I} d_J |J|^{-1/2} & \text{if} \quad I \subset J_+
 \\
 0 & \text{if} \quad J \subset I \text{ or } I \cap J = \emptyset.
\end{cases}$$
The Gram Matrix for the Operator $T_{b,d}^{(0,1,0,0)}$

The Gram matrix $\mathfrak{G}_{T_{b,d}^{(0,1,0,0)}} = [G_{I,J}]_{I,J \in \mathcal{D}}$ of $T_{b,d}^{(0,1,0,0)}$ relative to the basis $\{\widetilde{1}_{T(I)}\}_{I \in \mathcal{D}}$ then has entries given by

$$G_{I,J} = \left\langle T_{b,d}^{(0,1,0,0)} \widetilde{1}_{T(J)}, \widetilde{1}_{T(I)} \right\rangle_{L^2(\mathcal{H})}$$

$$= \sqrt{2} \begin{cases} -\overline{b}_I d_J |J|^{-\frac{1}{2}} & \text{if} \quad I \subset J_- \\ \overline{b}_I d_J |J|^{-\frac{1}{2}} & \text{if} \quad I \subset J_+ \\ 0 & \text{if} \quad J \subset I \text{ or } I \cap J = \emptyset. \end{cases}$$

Thus, up to an absolute constant, $\mathfrak{G}_{T_{b,d}^{(0,1,0,0)}} = \mathfrak{G}_{P_{b}^{(0,1)} \circ P_{d}^{(0,0)}}$, and so

$$\|P_{b}^{(0,1)} \circ P_{d}^{(0,0)}\|_{L^2 \to L^2} \approx \|T_{b,d}^{(0,1,0,0)}\|_{L^2(\mathcal{H}) \to L^2(\mathcal{H})}.$$
Connecting to a Two Weight Inequality

The inequality we wish to characterize is:

\[
\left\| M_b^{-1} U M_d^{\frac{1}{2}} f \right\|_{L_c^2(\mathcal{H})} = \left\| T_{b,d}^{(0,1,0,0)} f \right\|_{L_c^2(\mathcal{H})} \lesssim \| f \|_{L_c^2(\mathcal{H})}.
\]
Connecting to a Two Weight Inequality

The inequality we wish to characterize is:

$$\left\| \mathcal{M}^{-1}_b \mathcal{U} \mathcal{M}^{\frac{1}{2}}_d f \right\|_{L^2_c(\mathcal{H})} = \left\| T^{(0,1,0,0)}_{b,d} f \right\|_{L^2_c(\mathcal{H})} \lesssim \|f\|_{L^2_c(\mathcal{H})}.$$

Where the operator \mathcal{U} on $L^2(\mathcal{H})$ is defined by

$$\mathcal{U} \equiv \sum_{K \in \mathcal{D}} \tilde{1}_{Q_{\pm}(K)} \bigotimes \tilde{1}_{T(K)}.$$
Connecting to a Two Weight Inequality

The inequality we wish to characterize is:

\[\left\| \mathcal{M}_{-b}^{-1} U \mathcal{M}_{d}^{1/2} f \right\|_{L^2_c(\mathcal{H})} = \left\| T_{b,d}^{(0,1,0,0)} f \right\|_{L^2_c(\mathcal{H})} \lesssim \|f\|_{L^2_c(\mathcal{H})}. \]

Where the operator \(U \) on \(L^2(\mathcal{H}) \) is defined by

\[U \equiv \sum_{K \in \mathcal{D}} \tilde{1}_{Q_\pm(K)} \otimes \tilde{1}_{T(K)}. \]

One sees that the inequality to be characterized is equivalent to:

\[\| U (\mu g) \|_{L^2_c(\mathcal{H};\nu)} \lesssim \|g\|_{L^2_c(\mathcal{H};\mu)}, \]

where the weights \(\mu \) and \(\nu \) are given by

\[\nu \equiv \sum_{I \in \mathcal{D}} |b_I|^2 |I|^{-2} 1_{T(I)}, \]

\[\mu \equiv \sum_{I \in \mathcal{D}} |d_I|^{-2} |I|^{-1} 1_{T(I)}. \]
Proofs of Main Results

The Characterization of Type \((0, 1, 0, 0)\)

Theorem (S. Pott, E. Sawyer, M. Reguera-Rodriguez, BDW)

Suppose that \(\mu\) and \(\nu\) are positive measures on \(H\) that are constant on tiles, i.e.,

\[
\mu \equiv \sum_{I \in D} \mu_I 1_{T(I)},
\]

\[
\nu \equiv \sum_{I \in D} \nu_I 1_{T(I)}.
\]

Then

\[
U(\mu \cdot \cdot) : L^2_c(H; \mu) \to L^2_c(H; \nu)
\]

if and only if both

\[
\|U(\mu 1_{T(I)})\|_{L^2_c(H; \nu)} \leq C_1 \|1_{T(I)}\|_{L^2_c(H; \mu)} = \sum_{T(I)} \mu(T(I)),
\]

\[
\|1_{Q(I)} U(\nu 1_{Q(I)})\|_{L^2_c(H; \mu)} \leq C_2 \|1_{Q(I)}\|_{L^2_c(H; \nu)} = \sum_{Q(I)} \nu(Q(I)).
\]

hold for all \(I \in D\).

Moreover, we have that

\[
\|U\|_{L^2_c(H; \mu) \to L^2_c(H; \nu)} \approx C_1 + C_2
\]

where \(C_1\) and \(C_2\) are the best constants appearing above.
Theorem (S. Pott, E. Sawyer, M. Reguera-Rodriguez, BDW)

Suppose that μ and ν are positive measures on H that are constant on tiles, i.e., $\mu \equiv \sum_{I \in D} \mu_I 1_{T(I)}$, $\nu \equiv \sum_{I \in D} \nu_I 1_{T(I)}$.

Moreover, we have that $\|U\|_{L^2_c(H; \mu)} \rightarrow L^2_c(H; \nu) \approx C_1 + C_2$ where C_1 and C_2 are the best constants appearing above.
Suppose that μ and ν are positive measures on \mathcal{H} that are constant on tiles, i.e., $\mu \equiv \sum_{I \in \mathcal{D}} \mu_I 1_{T(I)}$, $\nu \equiv \sum_{I \in \mathcal{D}} \nu_I 1_{T(I)}$. Then

$$U(\mu \cdot) : L^2_c(\mathcal{H}; \mu) \rightarrow L^2_c(\mathcal{H}; \nu)$$

if and only if both

$$\|U(\mu 1_{T(I)})\|_{L^2_c(\mathcal{H}; \nu)} \leq C_1 \|1_{T(I)}\|_{L^2_c(\mathcal{H}; \mu)} = \sqrt{\mu(T(I))},$$

$$\|1_{Q(I)} U^* (\nu 1_{Q(I)})\|_{L^2_c(\mathcal{H}; \mu)} \leq C_2 \|1_{Q(I)}\|_{L^2_c(\mathcal{H}; \nu)} = \sqrt{\nu(Q(I))},$$

hold for all $I \in \mathcal{D}$.
Theorem (S. Pott, E. Sawyer, M. Reguera-Rodriguez, BDW)

Suppose that μ and ν are positive measures on \mathcal{H} that are constant on tiles, i.e., $\mu \equiv \sum_{I \in \mathcal{D}} \mu_I 1_{T(I)}$, $\nu \equiv \sum_{I \in \mathcal{D}} \nu_I 1_{T(I)}$. Then

$$U(\mu \cdot) : L^2_c(\mathcal{H}; \mu) \to L^2_c(\mathcal{H}; \nu)$$

if and only if both

$$\|U(\mu 1_{T(I)})\|_{L^2_c(\mathcal{H}; \nu)} \leq C_1 \|1_{T(I)}\|_{L^2_c(\mathcal{H}; \mu)} = \sqrt{\mu(T(I))},$$

$$\|1_{Q(I)} U^*(\nu 1_{Q(I)})\|_{L^2_c(\mathcal{H}; \mu)} \leq C_2 \|1_{Q(I)}\|_{L^2_c(\mathcal{H}; \nu)} = \sqrt{\nu(Q(I))},$$

hold for all $I \in \mathcal{D}$. Moreover, we have that

$$\|U\|_{L^2_c(\mathcal{H}; \mu) \to L^2_c(\mathcal{H}; \nu)} \approx C_1 + C_2$$

where C_1 and C_2 are the best constants appearing above.
An Application: Linear Bound for Hilbert Transform

- For a weight \(w \), i.e., a positive locally integrable function on \(\mathbb{R} \), let \(L^2(w) \equiv L^2(\mathbb{R}; w) \).
An Application: Linear Bound for Hilbert Transform

- For a weight w, i.e., a positive locally integrable function on \mathbb{R}, let $L^2(w) \equiv L^2(\mathbb{R}; w)$.
- A weight belongs to A_2 if: $[w]_{A_2} \equiv \sup_I \langle w \rangle_I \langle w^{-1} \rangle_I < +\infty$.
An Application: Linear Bound for Hilbert Transform

- For a weight w, i.e., a positive locally integrable function on \mathbb{R}, let $L^2(w) \equiv L^2(\mathbb{R}; w)$.
- A weight belongs to A_2 if: $[w]_{A_2} \equiv \sup_I \langle w \rangle_I \langle w^{-1} \rangle_I < +\infty$.
- The Hilbert transform is the operator: $H(f)(x) \equiv \text{p.v.} \int_{\mathbb{R}} \frac{f(y)}{y-x} \, dy$.
An Application: Linear Bound for Hilbert Transform

- For a weight w, i.e., a positive locally integrable function on \mathbb{R}, let $L^2(w) \equiv L^2(\mathbb{R}; w)$.
- A weight belongs to A_2 if: $[w]_{A_2} \equiv \sup_I \langle w \rangle_I \langle w^{-1} \rangle_I < +\infty$.
- The Hilbert transform is the operator: $H(f)(x) \equiv \text{p.v.} \int_{\mathbb{R}} \frac{f(y)}{y-x} \, dy$.

Theorem (Petermichl)

Let $w \in A_2$. Then $\|H\|_{L^2(w) \rightarrow L^2(w)} \lesssim [w]_{A_2}$, and the linear growth is optimal.
An Application: Linear Bound for Hilbert Transform

- For a weight w, i.e., a positive locally integrable function on \mathbb{R}, let $L^2(w) \equiv L^2(\mathbb{R}; w)$.
- A weight belongs to A_2 if: $[w]_{A_2} \equiv \sup_I \langle w \rangle_I \langle w^{-1} \rangle_I < +\infty$.
- The Hilbert transform is the operator: $H(f)(x) \equiv \text{p.v.} \int_{\mathbb{R}} \frac{f(y)}{y-x} \, dy$.

Theorem (Petermichl)

Let $w \in A_2$. Then $\|H\|_{L^2(w) \to L^2(w)} \lesssim [w]_{A_2}$, and the linear growth is optimal.

- $\|T\|_{L^2(w) \to L^2(w)} = \| M_{w^{\frac{1}{2}}} T M_{w^{-\frac{1}{2}}} \|_{L^2 \to L^2}$;
An Application: Linear Bound for Hilbert Transform

- For a weight w, i.e., a positive locally integrable function on \mathbb{R}, let $L^2(w) \equiv L^2(\mathbb{R}; w)$.
- A weight belongs to A_2 if: $[w]_{A_2} \equiv \sup_I \langle w \rangle_I \langle w^{-1} \rangle_I < +\infty$.
- The Hilbert transform is the operator: $H(f)(x) \equiv \text{p.v.} \int_{\mathbb{R}} \frac{f(y)}{y-x} \, dy$.

Theorem (Petermichl)

Let $w \in A_2$. Then $\|H\|_{L^2(w) \to L^2(w)} \lesssim [w]_{A_2}$, and the linear growth is optimal.

- $\|T\|_{L^2(w) \to L^2(w)} = \left\| M_{\frac{1}{2}} T M_{\frac{1}{2}} \right\|_{L^2 \to L^2}$;
- H is the average of dyadic shifts III;
An Application: Linear Bound for Hilbert Transform

- For a weight w, i.e., a positive locally integrable function on \mathbb{R}, let $L^2(w) \equiv L^2(\mathbb{R}; w)$.
- A weight belongs to A_2 if: $[w]_{A_2} \equiv \sup_I \langle w \rangle_I \langle w^{-1} \rangle_I < +\infty$.
- The Hilbert transform is the operator: $H(f)(x) \equiv \text{p.v.} \int_{\mathbb{R}} \frac{f(y)}{y-x} dy$.

Theorem (Petermichl)

Let $w \in A_2$. Then $\|H\|_{L^2(w) \rightarrow L^2(w)} \lesssim [w]_{A_2}$, and the linear growth is optimal.

- $\|T\|_{L^2(w) \rightarrow L^2(w)} = \|M_{w^{1/2}} TM_{w^{-1/2}}\|_{L^2 \rightarrow L^2}$;
- H is the average of dyadic shifts \mathcal{H};
- $M_{w^{1/2}} \mathcal{H} M_{w^{-1/2}}$ can be written as a sum of nine compositions of paraproducts;
- However, each term can be shown to have norm no worse than $[w]_{A_2}$.

B. D. Wick (Georgia Tech)
An Application: Linear Bound for Hilbert Transform

- For a weight w, i.e., a positive locally integrable function on \mathbb{R}, let $L^2(w) \equiv L^2(\mathbb{R}; w)$.
- A weight belongs to A_2 if: $[w]_{A_2} \equiv \sup_I \langle w \rangle_I \langle w^{-1} \rangle_I < +\infty$.
- The Hilbert transform is the operator: $H(f)(x) \equiv \text{p.v.} \int_{\mathbb{R}} \frac{f(y)}{y-x} dy$.

Theorem (Petermichl)

Let $w \in A_2$. Then $\|H\|_{L^2(w) \rightarrow L^2(w)} \lesssim [w]_{A_2}$, and the linear growth is optimal.

- $\|T\|_{L^2(w) \rightarrow L^2(w)} = \left\| M_{w^{\frac{1}{2}}} TM_{w^{-\frac{1}{2}}} \right\|_{L^2 \rightarrow L^2}$;
- H is the average of dyadic shifts \mathbb{I};
- $M_{w^{\frac{1}{2}}} \mathbb{I} M_{w^{-\frac{1}{2}}}$ can be written as a sum of nine compositions of paraproducts; Some of which are amenable to the Theorems above.
An Application: Linear Bound for Hilbert Transform

- For a weight \(w \), i.e., a positive locally integrable function on \(\mathbb{R} \), let \(L^2(w) \equiv L^2(\mathbb{R}; w) \).
- A weight belongs to \(A_2 \) if: \([w]_{A_2} \equiv \sup_I \langle w \rangle_I \langle w^{-1} \rangle_I < +\infty \).
- The Hilbert transform is the operator: \(H(f)(x) \equiv \text{p.v.} \int_{\mathbb{R}} \frac{f(y)}{y-x} \, dy \).

Theorem (Petermichl)

Let \(w \in A_2 \). Then \(\| H \|_{L^2(w) \rightarrow L^2(w)} \lesssim [w]_{A_2} \), and the linear growth is optimal.

- \(\| T \|_{L^2(w) \rightarrow L^2(w)} = \left\| M_{w^{1/2}} T M_{w^{-1/2}} \right\|_{L^2 \rightarrow L^2} \);
- \(H \) is the average of dyadic shifts \(\text{III} \);
- \(M_{w^{1/2}} \text{III} M_{w^{-1/2}} \) can be written as a sum of nine compositions of paraproducts; Some of which are amenable to the Theorems above.
- However, each term can be shown to have norm no worse than \([w]_{A_2} \).
An Open Question

Unfortunately, the methods described do not appear to work to handle type \((0, 1, 0, 1)\) compositions. However, the following question is of interest:

For each \(I \in D\) determine function \(F_I, B_I \in L^2\) of norm 1 such that

\[
P(0, 1) \circ P(0, 1) \text{ is bounded on } L^2 \iff \|P(0, 1) \circ P(0, 1)\|_{L^2} \leq C_1 \forall I \in D;
\]

\[
P(1, 0) \circ P(1, 0) \text{ is bounded on } L^2 \iff \|P(1, 0) \circ P(1, 0)\|_{L^2} \leq C_2 \forall I \in D.
\]

Moreover, we will have

\[
\|P(0, 1) \circ P(0, 1)\|_{L^2} \to L^2 \approx C_1 + C_2.
\]
An Open Question

Unfortunately, the methods described do not appear to work to handle type $(0, 1, 0, 1)$ compositions. However, the following question is of interest:

Question

For each $I \in \mathcal{D}$ determine function $F_I, B_I \in L^2$ of norm 1 such that $P_b^{(0,1)} \circ P_d^{(0,1)}$ is bounded on L^2 if and only if

$$\left\| P_b^{(0,1)} \circ P_d^{(0,1)} F_I \right\|_{L^2} \leq C_1 \quad \forall I \in \mathcal{D};$$

$$\left\| P_d^{(1,0)} \circ P_b^{(1,0)} B_I \right\|_{L^2} \leq C_2 \quad \forall I \in \mathcal{D}.$$

Moreover, we will have

$$\left\| P_b^{(0,1)} \circ P_d^{(0,1)} \right\|_{L^2 \rightarrow L^2} \approx C_1 + C_2.$$
Thanks to Nicola, John, Marco, Stefan, and Maura for Organizing the Meeting!
Thanks to Nicola, John, Marco, Stefan, and Maura for organizing the meeting!

The daydreams of cat herders
(Modified from the Original Dr. Fun Comic)
(Modified from the Original Dr. Fun Comic)

Thanks to Nicola, John, Marco, Stefan, and Maura for Organizing the Meeting!
Thank You!