DUAL HILBERT FUNCTION SPACES AND DUAL FUNCTIONAL MODELS OF LINEAR OPERATORS

Dmitry Yakubovich

Universidad Autónoma de Madrid e Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), Spain)

co-authors: José Galé and Pedro Miana (Univ. Zaragoza, Spain)

May 23, 2013

D. YAKUBOVICH (UAM - ICMAT) DUAL FUNCT. MODELS OF LINEAR OPERATORS

May 23, 2013 1 / 22

200

1 GENERAL IDEAS ON THE DUAL MODELS

- 2 Examples of dual models
- 3 Generalities on Nagy-Foiaş type models
- Application to generators of analytic semigroups
- **6** Other applications of the Nagy–Foiaş type models
- 6 A CONCLUDING REMARK

SQ Q

1. GENERAL IDEAS ON THE DUAL MODELS

Almost-eigenvectors and the ultraspectrum Let $A \in \mathcal{L}(X)$, X a Hilbert space.

200

Almost-eigenvectors and the ultraspectrum Let $A \in \mathcal{L}(X)$, X a Hilbert space. Suppose

$$U \xrightarrow{B} X \xrightarrow{C} Y,$$

inputs

outputs;

$$U \stackrel{B^*}{\longleftarrow} X \stackrel{C^*}{\longleftarrow} Y.$$

5900

Almost-eigenvectors and the ultraspectrum Let $A \in \mathcal{L}(X)$, X a Hilbert space. Suppose

$$U \xrightarrow{B} X \xrightarrow{C} Y$$
,

inputs

outputs;

$$U \stackrel{B^*}{\longleftarrow} X \stackrel{C^*}{\longleftarrow} Y.$$

Almost-eigenvectors of A^* :

$$(\overline{z}I - A^*)g_{z,u,y} = C^*y,$$

 $B^*g_{z,u,y} = u, \qquad (u,y) \in U \oplus Y.$

May 23, 2013 3 / 22

San

Almost-eigenvectors and the ultraspectrum Let $A \in \mathcal{L}(X)$, X a Hilbert space. Suppose

$$U \xrightarrow{B} X \xrightarrow{C} Y$$
,

inputs

outputs;

$$U \stackrel{B^*}{\longleftarrow} X \stackrel{C^*}{\longleftarrow} Y.$$

Almost-eigenvectors of A^* :

$$egin{aligned} & (ar{z}I-A^*)g_{z,u,y}=C^*y, \ & B^*g_{z,u,y}=u, & (u,y)\in U\oplus Y. \end{aligned}$$

Assumption: (z, u, y) determine $g = g_{z,u,y}$.

$$\exists g = g_{z,u,y} \iff (u,y) \in \mathcal{F}(z).$$

The ultraspectrum of A: the vector bundle

$$\mathcal{F} = \left\{ \mathcal{F}(z) \right\}_{z \in \mathbb{C}}$$

(of varying dimension, in general).

D. YAKUBOVICH (UAM - ICMAT) DUAL FUNCT. MODELS OF LINEAR OPERATORS

DQA

Definition of $\mathcal{O}_{A,B,C}$.

$$x \in X \mapsto \mathcal{O}_{A,B,C} x, \quad (\mathcal{O}_{A,B,C} x)(z) = \langle x, g_{z,u,y} \rangle.$$

 $\mathcal{O}_{A,B,C}: X \to \{ \text{holomorphic cross-sections of } \mathcal{F}^* = \{ \mathcal{F}(z)^* \}_{z \in \mathbb{C}} \},$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ○○○

Definition of $\mathcal{O}_{A,B,C}$.

$$x \in X \mapsto \mathcal{O}_{A,B,C} x, \quad (\mathcal{O}_{A,B,C} x)(z) = \langle x, g_{z,u,y} \rangle.$$

 $\mathcal{O}_{A,B,C}: X \to \{ \text{holomorphic cross-sections of } \mathcal{F}^* = \{ \mathcal{F}(z)^* \}_{z \in \mathbb{C}} \},$

$$(\mathcal{O}_{A,B,C}Ax)(z) = (M_z^T \mathcal{O}_{A,B,C}x)(z),$$

$$M_z^T f(z) \stackrel{\text{def}}{=} zf(z) - (zf(z)) \big|_{z=\infty}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ○○○

Definition of $\mathcal{O}_{A,B,C}$.

$$x \in X \mapsto \mathcal{O}_{A,B,C} x, \quad (\mathcal{O}_{A,B,C} x)(z) = \langle x, g_{z,u,y} \rangle.$$

 $\mathcal{O}_{A,B,C}: X \to \{ \text{holomorphic cross-sections of } \mathcal{F}^* = \{ \mathcal{F}(z)^* \}_{z \in \mathbb{C}} \},$

$$(\mathcal{O}_{A,B,C}Ax)(z) = (M_z^{\mathsf{T}}\mathcal{O}_{A,B,C}x)(z),$$

$$M_z^T f(z) \stackrel{\text{def}}{=} z f(z) - (z f(z)) \big|_{z=\infty}.$$

General scheme:

- 1) Find almost-eigenvectors of A and of A^* .
- 2) Define model spaces $Mod(\mathcal{F})$, $Mod(\mathcal{F}_*)$ for A and A^* .
- 3) Define the Cauchy duality between $Mod(\mathcal{F})$ and $Mod(\mathcal{F}_*)$
- 4) Prove the Model Theorem:

200

Definition of $\mathcal{O}_{A,B,C}$.

$$x \in X \mapsto \mathcal{O}_{A,B,C} x, \quad (\mathcal{O}_{A,B,C} x)(z) = \langle x, g_{z,u,y} \rangle.$$

 $\mathcal{O}_{A,B,C}: X \to \{ \text{holomorphic cross-sections of } \mathcal{F}^* = \{ \mathcal{F}(z)^* \}_{z \in \mathbb{C}} \},$

$$(\mathcal{O}_{A,B,C}Ax)(z) = (M_z^{\mathsf{T}}\mathcal{O}_{A,B,C}x)(z),$$

$$M_z^T f(z) \stackrel{\text{def}}{=} z f(z) - (z f(z)) \big|_{z=\infty}.$$

General scheme:

- 1) Find almost-eigenvectors of A and of A^* .
- 2) Define model spaces $Mod(\mathcal{F})$, $Mod(\mathcal{F}_*)$ for A and A^* .
- 3) Define the Cauchy duality between $Mod(\mathcal{F})$ and $Mod(\mathcal{F}_*)$
- 4) Prove the Model Theorem: A is similar to the operator of multiplication by the independent variable on the model space.

D. YAKUBOVICH (UAM - ICMAT) DUAL FUNCT. MODELS OF LINEAR OPERATORS

May 23, 2013 4 / 22

Basic idea: to construct simultaneously the models of A and A^* .

$$\mathcal{O} = \mathcal{O}_{A,B,C}; \qquad \mathcal{O}_* = \mathcal{O}_{A^*,C^*,B^*}.$$

 $\begin{array}{ccc} X & X^* \\ \mathcal{O} \downarrow & \mathcal{O}_* \downarrow \\ \mathsf{Mod}(\mathcal{F}) & \mathsf{Mod}(\mathcal{F}_*). \end{array}$

 $f, g \mapsto \langle f, g \rangle_d \in \mathbb{C}$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽へ⊙

1. GENERAL IDEAS ON THE DUAL MODELS

Basic idea: to construct simultaneously the models of A and A^* .

$$\mathcal{O} = \mathcal{O}_{A,B,C}; \qquad \mathcal{O}_* = \mathcal{O}_{A^*,C^*,B^*}.$$

 $\begin{array}{ccc} X & X^* \\ \mathcal{O} \downarrow & \mathcal{O}_* \downarrow \\ \mathsf{Mod}(\mathcal{F}) & \mathsf{Mod}(\mathcal{F}_*). \end{array}$

 $f, g \mapsto \langle f, g \rangle_d \in \mathbb{C}$

Fact: $Mod(\mathcal{F}) = (Mod(\mathcal{F}_*))^*$, \mathcal{O} , \mathcal{O}_* bounded, one-to-one \Longrightarrow

they are isomorphisms,

$$\langle x, y \rangle = \langle \mathcal{O}x, \mathcal{O}_*y \rangle_d \qquad \forall x \in X \quad \forall y \in X^*.$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽へ⊙

Remarks 1. A simple calculation shows:

$$\langle g_{z,u,y}, g_{*,w,u_*,y_*} \rangle = \frac{\langle u, u_* \rangle - \langle y, y_* \rangle}{w-z}, \quad (u,y) \in \mathcal{F}(z), (u_*,y_*) \in \mathcal{F}_*(w).$$

D. YAKUBOVICH (UAM - ICMAT) DUAL FUNCT. MODELS OF LINEAR OPERATORS

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Remarks 1. A simple calculation shows:

$$\langle g_{z,u,y}, g_{*,w,u_*,y_*} \rangle = \frac{\langle u, u_* \rangle - \langle y, y_* \rangle}{w-z}, \quad (u,y) \in \mathcal{F}(z), (u_*,y_*) \in \mathcal{F}_*(w).$$

It follows that the duality between $Mod(\mathcal{F})$ and $Mod(\mathcal{F}_*)$ is always a Cauchy duality.

Sar

1. GENERAL IDEAS ON THE DUAL MODELS

Remarks 1. A simple calculation shows:

$$\langle g_{z,u,y}, g_{*,w,u_*,y_*} \rangle = \frac{\langle u, u_* \rangle - \langle y, y_* \rangle}{w-z}, \quad (u,y) \in \mathcal{F}(z), (u_*,y_*) \in \mathcal{F}_*(w).$$

It follows that the duality between $Mod(\mathcal{F})$ and $Mod(\mathcal{F}_*)$ is always a Cauchy duality. 2. For $z \notin \sigma(A)$,

$$(u,y)\in \mathcal{F}(z)\iff u=\Phi(z)^*y,$$

where

$$\Phi(z) = C(z - A)^{-1}B: \quad U \to Y$$

is the transfer function of system (A, B, C). In this case, instead of values $\mathcal{O}_{A,B,C}x(z)$ we can consider the values of

$$\mathcal{O}_{A,C}x(z) \stackrel{\mathrm{def}}{=} C(z-A)^{-1}x.$$

2. Examples of dual models

A. Toeplitz operators. $F \in C^{1+\epsilon}(\mathbb{T})$, $\epsilon > 0$; $F(\mathbb{T})$ has a finite number of self-intersections.

$${T}_{F}a=P_{H^2}(F\cdot a), \qquad a\in H^2.$$

Case of positive winding:

$$B = P_{\text{Lin}(1,z,z^2...,z^{N-1})}, \qquad C = 0.$$

Ja C

7 / 22

2. Examples of dual models

A. Toeplitz operators. $F \in C^{1+\epsilon}(\mathbb{T})$, $\epsilon > 0$; $F(\mathbb{T})$ has a finite number of self-intersections.

$$T_F a = P_{H^2}(F \cdot a), \qquad a \in H^2.$$

Case of positive winding:

$$B = P_{\text{Lin}(1,z,z^2...,z^{N-1})}, \qquad C = 0.$$

B. "Smooth" perturbations of normal operators with two-dimensional Lebesgue spectrum.

N normal;
$$A = N + K$$
 its perturbation.

$$K = CB;$$
 $\sigma(A) \subset \mathcal{D}.$

Conclusion: N + K is similar to the operator of multiplication by the independent variable on

$$\mathcal{H}_{\mathcal{D}}/\Theta E^{2}(\mathcal{D}).$$

May 23, 2013 7 / 22

SQ Q

C. Hyponormal operators. A **hyponormal** operator *T*:

$$D \stackrel{\mathrm{def}}{=} T^*T - TT^* \ge 0:$$

Dual analytic models of T and of T^* in *spaces of distributions*

D. Xia et al 1983, M. Martin, M. Putinar 1987, [Y] 1995.

$$B=D^{1/2}, \qquad C=0.$$

D. Subnormal operators.

A subnormal operator S: S = N|H, $NH \subset H$, N normal: D. Xia 1987 – 1996, McCarthy-Yang 1997 et al.: The case of finite rank self-commutator [Y], 1998:

Dual analytic models in *Hardy spaces over "halves" of real algebraic curves.*

Assume: $\sigma(A) \subset \Omega^{\operatorname{cl}} \stackrel{\operatorname{def}}{=} \operatorname{clos} \Omega$.

We wish to construct a Nagy-Foias type model of A in Ω .

Remind:

JOG C

Assume: $\sigma(A) \subset \Omega^{cl} \stackrel{\text{def}}{=} clos \Omega$. We wish to construct a Nagy-Foiaş type model of A in Ω .

Remind: The Hardy–Smirnov class

$$E^2(\Omega) \stackrel{\text{def}}{=} \operatorname{clos}_{L^2(\partial\Omega)} \mathsf{Pol}$$

Sac

10 / 22

Assume: $\sigma(A) \subset \Omega^{cl} \stackrel{\text{def}}{=} clos \Omega$. We wish to construct a Nagy-Foiaş type model of A in Ω .

Remind: The Hardy–Smirnov class

$$E^2(\Omega) \stackrel{\text{def}}{=} \operatorname{clos}_{L^2(\partial\Omega)}$$
 Pol

Vector-valued classes $E^2(\Omega, Y)$ are defined in the same way.

 $\sigma(A) \subset \Omega^{\mathsf{cl}} \stackrel{\mathrm{def}}{=} \mathsf{clos}\,\Omega.$

$$X \xrightarrow[\mathcal{O}_{A,C}]{} \operatorname{Mod}(\mathcal{F}) \subset E_0^2(\mathbb{C} \setminus \Omega^{\operatorname{cl}}, Y)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

D. YAKUBOVICH (UAM - ICMAT) DUAL FUNCT. MODELS OF LINEAR OPERATORS MAY 23, 2013 11 / 22

 $\sigma(A) \subset \Omega^{\mathsf{cl}} \stackrel{\mathrm{def}}{=} \mathsf{clos}\,\Omega.$

$$egin{array}{ccc} X & & \longrightarrow & \mathsf{Mod}(\mathcal{F}) \subset E_0^2(\mathbb{C} \setminus \Omega^{\mathsf{cl}}, Y) \ X^* & & \longrightarrow & \mathsf{Mod}(\mathcal{F}_*) \subset E_0^2(\mathbb{C} \setminus ar{\Omega^{\mathsf{cl}}}, U). \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$$\begin{array}{cccc} E^2(\Omega,U) & \xrightarrow[W_{A,B}]{} & X & \xrightarrow[\mathcal{O}_{A,C}]{} & \mathsf{Mod}(\mathcal{F}) \subset E^2_0(\mathbb{C} \setminus \Omega^{\mathsf{cl}},Y) \\ & & X^* & \xrightarrow[\mathcal{O}_{A^*,B^*}]{} & \mathsf{Mod}(\mathcal{F}_*) \subset E^2_0(\mathbb{C} \setminus \bar{\Omega^{\mathsf{cl}}},U). \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$$\begin{array}{cccc} E^2(\Omega,U) & \xrightarrow[W_{A,B}]{} & X & \xrightarrow[\mathcal{O}_{A,C}]{} & \mathsf{Mod}(\mathcal{F}) \subset E_0^2(\mathbb{C} \setminus \Omega^{\mathsf{cl}},Y) \\ & & X^* & \xrightarrow[\mathcal{O}_{A^*,B^*}]{} & \mathsf{Mod}(\mathcal{F}_*) \subset E_0^2(\mathbb{C} \setminus \bar{\Omega^{\mathsf{cl}}},U). \end{array}$$

Here

$$W_{A,B} = \left(\mathcal{O}_{A^*,B^*}\right)^* : E^2(\Omega,U) \to H.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$$\begin{array}{cccc} E^2(\Omega,U) & \xrightarrow[W_{A,B}]{} & X & \xrightarrow[\mathcal{O}_{A,C}]{} & \mathsf{Mod}(\mathcal{F}) \subset E^2_0(\mathbb{C} \setminus \Omega^{\mathsf{cl}},Y) \\ & & X^* & \bigoplus_{\mathcal{O}_{A^*,B^*}} & \mathsf{Mod}(\mathcal{F}_*) \subset E^2_0(\mathbb{C} \setminus \bar{\Omega^{\mathsf{cl}}},U). \end{array}$$

Here

$$W_{A,B} = \left(\mathcal{O}_{A^*,B^*}\right)^* : E^2(\Omega, U) \to H.$$

 $W_{A,B}$ is defined on U-valued rational functions by

$$W_{A,B}ig(q(z)uig) \stackrel{\mathrm{def}}{=} q(A)Bu \in X, \qquad u \in U, q \in \mathsf{Rat}(\Omega^{\mathsf{cl}}).$$

(4回) (日) (日) (日)

$$\begin{array}{cccc} E^2(\Omega,U) & \xrightarrow[W_{A,B}]{} & X & \xrightarrow[\mathcal{O}_{A,C}]{} & \mathsf{Mod}(\mathcal{F}) \subset E^2_0(\mathbb{C} \setminus \Omega^{\mathsf{cl}},Y) \\ & & X^* & \bigoplus_{\mathcal{O}_{A^*,B^*}} & \mathsf{Mod}(\mathcal{F}_*) \subset E^2_0(\mathbb{C} \setminus \bar{\Omega^{\mathsf{cl}}},U). \end{array}$$

Here

$$W_{A,B} = \left(\mathcal{O}_{A^*,B^*}\right)^* : E^2(\Omega, U) \to H.$$

 $W_{A,B}$ is defined on U-valued rational functions by

$$W_{A,B}ig(q(z)uig) \stackrel{\mathrm{def}}{=} q(A)Bu \in X, \qquad u \in U, q \in \mathsf{Rat}(\Omega^{\mathsf{cl}}).$$

Then $W_{A,B}$ is extended by continuity to $E^2(\Omega, U)$.

$$W_{A,B}M_z = AW_{A,B}$$

(ロ) (同) (三) (三) (三) (0)

$$E^2(\Omega, U) \xrightarrow[W_{A,B}]{} X \xrightarrow[\mathcal{O}_{A,C}]{} \operatorname{Mod}(\mathcal{F}) \subset E^2_0(\mathbb{C} \setminus \Omega^{\operatorname{cl}}, Y)$$

Here

$$W_{A,B} = \left(\mathcal{O}_{A^*,B^*}\right)^* : E^2(\Omega, U) \to H.$$

 $W_{A,B}$ is defined on U-valued rational functions by

$$W_{A,B}ig(q(z)uig) \stackrel{\mathrm{def}}{=} q(A)Bu \in X, \qquad u \in U, q \in \mathsf{Rat}(\Omega^{\mathsf{cl}}).$$

Then $W_{A,B}$ is extended by continuity to $E^2(\Omega, U)$.

$$W_{A,B}M_z = AW_{A,B}$$

(ロ) (同) (三) (三) (三) (0)

$$B: U \to X, \qquad \qquad W_{A,B}: E^2(\Omega, U) \to X$$

D. YAKUBOVICH (UAM - ICMAT) DUAL FUNCT. MODELS OF LINEAR OPERATORS MAY 23, 2013 12 / 22

$$B: U \to X, \qquad \qquad W_{A,B}: E^2(\Omega, U) \to X$$

DEFINITION	
(A, B) is exact	

$$B: U \to X,$$
 $W_{A,B}: E^2(\Omega, U) \to X$

DEFINITION

(A, B) is exact if $W_{A,B}$ is continuous on $E^2(\Omega, U)$ and surjective.

$$B: U \to X,$$
 $W_{A,B}: E^2(\Omega, U) \to X$

DEFINITION

(A, B) is exact if $W_{A,B}$ is continuous on $E^2(\Omega, U)$ and surjective.

DEFINITION

$$\ker W_{A,B} \stackrel{\text{def}}{=} \delta E^2(\Omega, \mathbf{Y});$$

San

$$B: U \to X,$$
 $W_{A,B}: E^2(\Omega, U) \to X$

DEFINITION

(A, B) is exact if $W_{A,B}$ is continuous on $E^2(\Omega, U)$ and surjective.

DEFINITION

ker
$$W_{A,B} \stackrel{\text{def}}{=} \delta E^2(\Omega, \mathbf{Y});$$

 $\delta \in H^{\infty}(\Omega, \mathbf{Y} \to U)$ is a generalized characteristic function of (A, B) .

12 / 22

$$B: U \to X,$$
 $W_{A,B}: E^2(\Omega, U) \to X$

DEFINITION

(A, B) is exact if $W_{A,B}$ is continuous on $E^2(\Omega, U)$ and surjective.

DEFINITION

ker $W_{A,B} \stackrel{\text{def}}{=} \delta E^2(\Omega, \mathbf{Y});$ $\delta \in H^{\infty}(\Omega, \mathbf{Y} \to U)$ is a generalized characteristic function of (A, B).

Note: Y is the space of outputs, $\delta(z) : Y \to U$.

$$B: U \to X,$$
 $W_{A,B}: E^2(\Omega, U) \to X$

DEFINITION

(A, B) is exact if $W_{A,B}$ is continuous on $E^2(\Omega, U)$ and surjective.

DEFINITION

ker $W_{A,B} \stackrel{\text{def}}{=} \delta E^2(\Omega, Y)$; $\delta \in H^{\infty}(\Omega, Y \to U)$ is a generalized characteristic function of (A, B).

Note: Y is the space of outputs, $\delta(z) : Y \to U$.

We could have assumed that δ is an inner function.
$$B: U \to X, \qquad \qquad W_{A,B}: E^2(\Omega, U) \to X$$

DEFINITION

(A, B) is exact if $W_{A,B}$ is continuous on $E^2(\Omega, U)$ and surjective.

DEFINITION

ker $W_{A,B} \stackrel{\text{def}}{=} \delta E^2(\Omega, Y)$; $\delta \in H^{\infty}(\Omega, Y \to U)$ is a generalized characteristic function of (A, B).

Note: Y is the space of outputs, $\delta(z) : Y \to U$.

We could have assumed that δ is an inner function.

However, we assume only $\|\delta^{-1}|\partial\Omega\| \leq C$.

Definition of $\widehat{W}_{A,B}$:

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Х

<ロト < 同ト < 回ト < 回ト = 三三

500

Definition of $\widehat{W}_{A,B}$:

 $E^2(\Omega, U)$

Definition of
$$\widehat{W}_{A,B}$$
:
 $E^2(\Omega, U) \longrightarrow X$

D. YAKUBOVICH (UAM - ICMAT) DUAL FUNCT. MODELS OF LINEAR OPERATORS MAY 23, 2013 13 / 22

Definition of $\widehat{W}_{A,B}$: $E^{2}(\Omega, U)/\delta E^{2}(\Omega, Y)$

W_{A,B} X

3

200

Definition of $\widehat{W}_{A,B}$: $E^{2}(\Omega, U)/\delta E^{2}(\Omega, Y)$

 $\xrightarrow{\widehat{W}_{A,B}} X$

5900

E

D. YAKUBOVICH (UAM - ICMAT) DUAL FUNCT. MODELS OF LINEAR OPERATORS MAY 23, 2013 13 / 22

Definition of $\widehat{W}_{A,B}$: $E^2(\Omega, U)/\delta E^2(\Omega, Y) \longrightarrow X$

Theorem (control model). Suppose system (A, B) is exactly controllable, and define its G.Ch.F. θ and a space Y by Ker $W = \delta E^2(\Omega, Y)$. Then A is similar to the operator of multiplication by the independent variable on

 $E^{2}(\Omega, U)/\delta E^{2}(\Omega, Y).$

The converse also holds true.

Definition of $\widehat{W}_{A,B}$: $E^2(\Omega, U)/\delta E^2(\Omega, Y) \longrightarrow X$

Theorem (control model). Suppose system (A, B) is exactly controllable, and define its G.Ch.F. θ and a space Y by Ker $W = \delta E^2(\Omega, Y)$. Then A is similar to the operator of multiplication by the independent variable on

 $E^{2}(\Omega, U)/\delta E^{2}(\Omega, Y).$

(日) (雪) (日) (日) (日)

MAY 23, 2013

San

13 / 22

The converse also holds true.

ONE OF THE MAIN QUESTIONS

How to calculate δ explicitly ?

The duality between the observation and the control models:

<ロト (四) (三) (三) (三)

200

The duality between the observation and the control models:

The duality between the observation and the control models:

The duality between the observation and the control models:

The duality between the observation and the control models:

| ◆ □ ▶ ◆ 三 ▶ ◆ 三 ▶ ○ ○ ○ ○ ○ ○

The duality between the observation and the control models:

 $\mathsf{Range}\, J_\delta \stackrel{\mathrm{def}}{=} \mathcal{H}(\delta) = \big\{ g \in E^2(\mathbb{C} \setminus \bar{\Omega}, Y) : \quad \delta \cdot g | \partial \Omega \in E^2(\Omega, U) \big\}.$

・ロト ・戸 ・ イヨト ・ヨー うへつ

The duality between the observation and the control models:

 $\mathsf{Range}\, J_\delta \stackrel{\mathrm{def}}{=} \mathcal{H}(\delta) = \big\{ g \in E^2(\mathbb{C} \setminus \bar{\Omega}, Y) : \quad \delta \cdot g | \partial \Omega \in E^2(\Omega, U) \big\}.$

・ロト ・戸 ・ イヨト ・ヨー うへつ

5900

MAIN TECHNICAL RESULT

Suppose $W_{A,B}$, $\mathcal{O}_{A,C}$ are bounded, $\mathcal{O}_{A,C}$ is one to one and $W_{A,B}$ has dense range. Then

15 / 22

MAIN TECHNICAL RESULT

Suppose $W_{A,B}$, $\mathcal{O}_{A,C}$ are bounded, $\mathcal{O}_{A,C}$ is one to one and $W_{A,B}$ has dense range. Then $\mathcal{O}_{A,C}\widehat{W_{A,B}} = \widehat{J_{\delta}} \Rightarrow$

MAIN TECHNICAL RESULT

Suppose $W_{A,B}$, $\mathcal{O}_{A,C}$ are bounded, $\mathcal{O}_{A,C}$ is one to one and $W_{A,B}$ has dense range. Then $\mathcal{O}_{A,C}\widehat{W_{A,B}} = \widehat{J_{\delta}} \Rightarrow$ both $\mathcal{O}_{A,C}$ and $\widehat{W}_{A,B}$ are isomorphisms, and we obtain both control and observation Nagy-Foiaş type models of A in Ω .

MAIN TECHNICAL RESULT

Suppose $W_{A,B}$, $\mathcal{O}_{A,C}$ are bounded, $\mathcal{O}_{A,C}$ is one to one and $W_{A,B}$ has dense range. Then $\mathcal{O}_{A,C}\widehat{W_{A,B}} = \widehat{J_{\delta}} \Rightarrow$ both $\mathcal{O}_{A,C}$ and $\widehat{W}_{A,B}$ are isomorphisms, and we obtain both control and observation Nagy-Foiaş type models of A in Ω .

REMARK.

D. YAKUBOVICH (UAM - ICMAT) DUAL FUNCT. MODELS OF LINEAR OPERATORS

May 23, 2013 15 / 22

MAIN TECHNICAL RESULT

Suppose $W_{A,B}$, $\mathcal{O}_{A,C}$ are bounded, $\mathcal{O}_{A,C}$ is one to one and $W_{A,B}$ has dense range. Then $\mathcal{O}_{A,C}\widehat{W_{A,B}} = \widehat{J_{\delta}} \Rightarrow$ both $\mathcal{O}_{A,C}$ and $\widehat{W}_{A,B}$ are isomorphisms, and we obtain both control and observation Nagy-Foiaş type models of A in Ω .

REMARK.

$$\mathcal{O}_{A,C} \widehat{W_{A,B}} = \widehat{J_{\delta}} \quad \Longleftrightarrow$$

D. YAKUBOVICH (UAM - ICMAT) DUAL FUNCT. MODELS OF LINEAR OPERATORS

May 23, 2013 15 / 22

MAIN TECHNICAL RESULT

Suppose $W_{A,B}$, $\mathcal{O}_{A,C}$ are bounded, $\mathcal{O}_{A,C}$ is one to one and $W_{A,B}$ has dense range. Then $\mathcal{O}_{A,C}\widehat{W_{A,B}} = \widehat{J_{\delta}} \Rightarrow$ both $\mathcal{O}_{A,C}$ and $\widehat{W}_{A,B}$ are isomorphisms, and we obtain both control and observation Nagy-Foiaş type models of A in Ω .

REMARK.

$$\mathcal{O}_{A,C}\widetilde{W_{A,B}} = \widehat{J_{\delta}} \iff \Phi u = P_{-}(\delta^{-1}u) \text{ on } \mathbb{C} \setminus \Omega^{\mathsf{cl}} \quad \forall u \in U$$

D. YAKUBOVICH (UAM - ICMAT) DUAL FUNCT. MODELS OF LINEAR OPERATORS

May 23, 2013 15 / 22

MAIN TECHNICAL RESULT

Suppose $W_{A,B}$, $\mathcal{O}_{A,C}$ are bounded, $\mathcal{O}_{A,C}$ is one to one and $W_{A,B}$ has dense range. Then $\mathcal{O}_{A,C}\widehat{W_{A,B}} = \widehat{J_{\delta}} \Rightarrow$ both $\mathcal{O}_{A,C}$ and $\widehat{W}_{A,B}$ are isomorphisms, and we obtain both control and observation Nagy-Foiaş type models of A in Ω .

REMARK.

 $\mathcal{O}_{A,C}\widehat{W_{A,B}} = \widehat{J_{\delta}} \iff \Phi u = P_{-}(\delta^{-1}u) \text{ on } \mathbb{C} \setminus \Omega^{\mathsf{cl}} \quad \forall u \in U$ where $\Phi(z) = C(z-A)^{-1}B : U \to Y$ is the transfer function.

D. YAKUBOVICH (UAM - ICMAT) DUAL FUNCT. MODELS OF LINEAR OPERATORS

< (1) < (1)

Suppose $0 < \theta < \pi/2$,

590

<ロト (四) (三) (三) (三) (三)

Suppose $0 < \theta < \pi/2$,

$$\Omega = \Omega_{ heta} = \big\{ z \in \mathbb{C} : z
eq 0, | \arg z | < heta \big\}.$$

590

<ロト (四) (三) (三) (三) (三)

Suppose $0 < \theta < \pi/2$,

$$\Omega = \Omega_{ heta} = ig\{ z \in \mathbb{C} : z
eq 0, | \arg z | < heta ig\}.$$

Let A be a closed operator on a Hilbert space X,

San

Suppose 0 < heta < $\pi/2$,

$$\Omega = \Omega_{ heta} = ig\{ z \in \mathbb{C} : z
eq 0, | \arg z | < heta ig\}.$$

Let A be a closed operator on a Hilbert space X,

$$|(z-A)^{-1}|| \leq \frac{C}{|z|}, \qquad z \notin \Omega_{\theta}.$$

We assume ker A = 0.

San

THEOREM (A. MCINTOSH, 1986) Let $\Omega = \Omega_{\theta} = \{z \in \mathbb{C} : z \neq 0, |\arg z| < \theta\}$ and A is as above. Then TFAE: (a) A admits an $H^{\infty}(\Omega)$ functional calculus; (b) $\{A^{is}\}_{s \in \mathbb{R}}$ is a C_0 group; (c) $\forall \alpha \in (0, 1), \quad \mathcal{D}(A^{\alpha}) = \mathcal{D}(|A|^{\alpha}), \quad \mathcal{D}(A^{*\alpha}) = \mathcal{D}(|A^*|^{\alpha}).$

▲□ → ▲ ■ → ▲ ■ → のへで

THEOREM (A. MCINTOSH, 1986) Let $\Omega = \Omega_{\theta} = \{z \in \mathbb{C} : z \neq 0, |\arg z| < \theta\}$ and A is as above. Then TFAE: (a) A admits an $H^{\infty}(\Omega)$ functional calculus; (b) $\{A^{is}\}_{s \in \mathbb{R}}$ is a C_0 group; (c) $\forall \alpha \in (0, 1), \quad \mathcal{D}(A^{\alpha}) = \mathcal{D}(|A|^{\alpha}), \quad \mathcal{D}(A^{*\alpha}) = \mathcal{D}(|A^*|^{\alpha}).$

By applying Nagy-Foias type models, we obtain the following

THEOREM (J. GALÉ-P. MIANA-Y.)

Put

$$U = Y = H$$
, $B = 2\sqrt{A}$, $B = \sqrt{A}$.

Then $(a) \Leftrightarrow (b) \Leftrightarrow (c) \Leftrightarrow$

THEOREM (A. MCINTOSH, 1986) Let $\Omega = \Omega_{\theta} = \{z \in \mathbb{C} : z \neq 0, |\arg z| < \theta\}$ and A is as above. Then TFAE: (a) A admits an $H^{\infty}(\Omega)$ functional calculus; (b) $\{A^{is}\}_{s \in \mathbb{R}}$ is a C_0 group; (c) $\forall \alpha \in (0, 1), \quad \mathcal{D}(A^{\alpha}) = \mathcal{D}(|A|^{\alpha}), \quad \mathcal{D}(A^{*\alpha}) = \mathcal{D}(|A^*|^{\alpha}).$

By applying Nagy-Foias type models, we obtain the following

THEOREM (J. GALÉ-P. MIANA-Y.)

Put

$$U = Y = H$$
, $B = 2\sqrt{A}$, $B = \sqrt{A}$.

Then $(a) \Leftrightarrow (b) \Leftrightarrow (c) \Leftrightarrow$ (d) $\mathcal{O}_{A,C}$ and $\widehat{W}_{A,B}$ are isomorphisms, with

$$\delta(z)=\frac{A-z}{A+z}.$$

Remark: McIntosh's construction is related with:

• The Kato square root problem

San

Remark: McIntosh's construction is related with:

- The Kato square root problem
- maximal regularity

San

18 / 22

Remark: McIntosh's construction is related with:

- The Kato square root problem
- maximal regularity
- boundedness of the Cauchy integral operator on a Lipschitz curve

Remark: McIntosh's construction is related with:

- The Kato square root problem
- maximal regularity
- boundedness of the Cauchy integral operator on a Lipschitz curve
- The Banach space case is also very interesting.

5. Other applications of the Nagy–Foiaş type models

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ○臣 ○ のへで

5. Other applications of the Nagy–Foiaş type models

• A = a first order non-dissipative differential operator, $\Omega = a$ left half-plane; δ will be an explicit $n \times n$ entire function;
5. Other applications of the Nagy–Foiaş type models

- A = a first order non-dissipative differential operator, $\Omega = a$ left half-plane; δ will be an explicit $n \times n$ entire function;
- $A = a C_0$ generator of a linear neutral system with delays, $\Omega = a$ left half-plane; δ will be an explicit $n \times n$ holomoprhic function in \mathbb{C} (except for one first order pole);

5. Other applications of the Nagy–Foiaş type models

- A = a first order non-dissipative differential operator, $\Omega = a$ left half-plane; δ will be an explicit $n \times n$ entire function;
- A = a C₀ generator of a linear neutral system with delays,
 Ω = a left half-plane;
 δ will be an explicit n × n holomoprhic function in C
 (except for one first order pole);
- A = a generator of an arbitrary C_0 group; $\Omega = a$ suitable vertical strip;

$$\delta(z) = (z - A)(z + \sigma - A)^{-1}, \quad \sigma = \text{const};$$

5. Other applications of the Nagy–Foiaş type models

• A = a first order non-dissipative differential operator, $\Omega = a$ left half-plane; δ will be an explicit n \times n entire function:

 δ will be an explicit $n \times n$ entire function;

- $A = a C_0$ generator of a linear neutral system with delays, $\Omega = a$ left half-plane; δ will be an explicit $n \times n$ holomoprhic function in \mathbb{C} (except for one first order pole);
- A = a generator of an arbitrary C_0 group; $\Omega = a$ suitable vertical strip; $\delta(z) = (z - A)(z + \sigma - A)^{-1}$, $\sigma = \text{const}$;
- $A = A_0 + |A_0|^{\alpha} K |A_0|^{\alpha}$ non-dissipative operator ($\alpha \le \frac{1}{2}$), $\Omega =$ a suitable non-convex parabolic domain, also an explicit formula for δ .

6. A CONCLUDING REMARK

Thank you for your attention

D. YAKUBOVICH (UAM - ICMAT) DUAL FUNCT. MODELS OF LINEAR OPERATORS

May 23, 2013 20 / 22

E

Thank you for your attention !

D. YAKUBOVICH (UAM - ICMAT) DUAL FUNCT. MODELS OF LINEAR OPERATORS

Э

REFERENCES

D. Yakubovich (UAM - ICMAT) dual funct. Models of linear operators May 23, 2013 21 / 22

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ ��や

∃ ∽ へ (~

イロト イポト イヨト イヨト

2. S. M. Verduyn Lunel, D.Y., A functional model approach to linear neutral functional-differential equations, Integral Eqs. Operator Theory (1997);

JOG C

イロト イポト イヨト イヨト

2. S. M. Verduyn Lunel, D.Y., A functional model approach to linear neutral functional-differential equations, Integral Eqs. Operator Theory (1997);

3. D.Y, J. Operator Theory (2008);

- 不同下 不良下 不良下

-

200

21 / 22

2. S. M. Verduyn Lunel, D.Y., A functional model approach to linear neutral functional-differential equations, Integral Eqs. Operator Theory (1997);

3. D.Y, J. Operator Theory (2008);

4. P. Miana, J. Galé, D.Y. Math. Ann., 2011;

JOG C

- (E) - (

2. S. M. Verduyn Lunel, D.Y., A functional model approach to linear neutral functional-differential equations, Integral Eqs. Operator Theory (1997);

- 3. D.Y, J. Operator Theory (2008);
- 4. P. Miana, J. Galé, D.Y, Math. Ann., 2011;
- 5. D.Y, Revista Matemática Iberoamericana, 1998 (2 papers);

SQ Q

不得下 イヨト イヨト 二日

2. S. M. Verduyn Lunel, D.Y., A functional model approach to linear neutral functional-differential equations, Integral Eqs. Operator Theory (1997);

- 3. D.Y, J. Operator Theory (2008);
- 4. P. Miana, J. Galé, D.Y, Math. Ann., 2011;
- 5. D.Y, Revista Matemática Iberoamericana, 1998 (2 papers);

6. D.Y, JFA, 1996.

REMARK

In general, $\mathcal{O}_{A,C}$ and $\widehat{W}_{A,B}$ are isomorphisms if one replaces H with H_A ,

REMARK

In general, $\mathcal{O}_{A,C}$ and $\widehat{W}_{A,B}$ are isomorphisms if one replaces H with H_A , where H_A is the completion of $A(I + A)^{-2}H$ w.r. to the McIntosh norm

$$\|x\|_{\mathcal{A}} := \left(\int_0^\infty \|\psi_t(\mathcal{A})x\|^2 \ \frac{dt}{t}\right)^{\frac{1}{2}},$$

where
$$\psi \in H^\infty(\Omega_ heta), \ \ |\psi(z)| \leq rac{|z|^s}{1+|z|^{2s}} \ \ (z\in\Omega_ heta),$$
 for some $s>0.$

REMARK

In general, $\mathcal{O}_{A,C}$ and $\widehat{W}_{A,B}$ are isomorphisms if one replaces H with H_A , where H_A is the completion of $A(I + A)^{-2}H$ w.r. to the McIntosh norm

$$\|x\|_{\mathcal{A}} := \left(\int_0^\infty \|\psi_t(\mathcal{A})x\|^2 \ \frac{dt}{t}\right)^{\frac{1}{2}},$$

where
$$\psi \in H^\infty(\Omega_ heta)$$
, $|\psi(z)| \leq rac{|z|^s}{1+|z|^{2s}}$ $(z \in \Omega_ heta)$, for some $s > 0$.

In particular, there is an H^{∞} calculus for A, considered as an operator on H_A .

REMARK

In general, $\mathcal{O}_{A,C}$ and $\widehat{W}_{A,B}$ are isomorphisms if one replaces H with H_A , where H_A is the completion of $A(I + A)^{-2}H$ w.r. to the McIntosh norm

$$\|x\|_{\mathcal{A}} := \left(\int_0^\infty \|\psi_t(\mathcal{A})x\|^2 \ \frac{dt}{t}\right)^{\frac{1}{2}},$$

where
$$\psi \in H^\infty(\Omega_ heta), \ |\psi(z)| \leq rac{|z|^s}{1+|z|^{2s}} \ (z\in\Omega_ heta),$$
 for some $s>0.$

In particular, there is an H^{∞} calculus for A, considered as an operator on H_A .

THEOREM 2 (J. GALÉ–P. MIANA–Y.)

Put $\Lambda = \log A + 2\pi i$. Then

REMARK

In general, $\mathcal{O}_{A,C}$ and $\widehat{W}_{A,B}$ are isomorphisms if one replaces H with H_A , where H_A is the completion of $A(I + A)^{-2}H$ w.r. to the McIntosh norm

$$\|x\|_{\mathcal{A}} := \left(\int_0^\infty \|\psi_t(\mathcal{A})x\|^2 \ \frac{dt}{t}\right)^{\frac{1}{2}},$$

where
$$\psi \in H^\infty(\Omega_ heta), \ |\psi(z)| \leq rac{|z|^s}{1+|z|^{2s}} \ (z\in\Omega_ heta),$$
 for some $s>0.$

In particular, there is an H^{∞} calculus for A, considered as an operator on H_A .

Theorem 2 (J. Galé–P. Miana–Y.)

Put $\Lambda = \log A + 2\pi i$. Then

$$\Lambda^{-r}H \subset H_A \subset \Lambda^r H, \qquad \forall r > \frac{1}{2}.$$

D. YAKUBOVICH (UAM - ICMAT) DUAL FUNCT. MODELS OF LINEAR OPERATORS